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Abstract 
 

The overall objective of my Math 501 research project is to create explicit 

closed-form formulas from homogeneous and non-homogeneous linear recurrence 

relations using four techniques:  (i) guess and check with induction, (ii) the 

characteristic polynomial, (iii) generating functions, and (iv) linear algebra. 

Recurrence relations are a central mathematical topic, frequently taught in courses 

such as Discrete or Finite Math, Combinatorics, Number Theory, and Computer 

Science. After presenting the four techniques for solving recurrence relations, I 

include some background information on each topic as well as a few examples for 

each.   

Another objective of the project is to explore the Pell Sequence, also known 

as the Pell Numbers.  Like other famous sequences, such as the Fibonacci or the 

Lucas Sequence, the Pell Sequence has some interesting properties of its own 

(Bicknell, 1975).  Within the study of the Pell Sequence other topics that will be 

explored include: (i) the “obscure” mathematician John Pell (Webster, 2006); (ii) the 

history, properties, and identities of the Pell Sequence; (iii) the solution of an 

explicit formula from the recurrence relation of the Pell Sequence with the four 

techniques; and (iv) some proofs of an alternate closed-form version of the Pell 

Sequence.   

Finally, I will give an explanation and summary of the curriculum that may be 

used in a high school or college level classroom.  In this portion of the project, there 

are materials for an instructor and students to use, including: lessons for students, 
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lessons for instructors with solutions, lesson plans for instructors, reflections and 

summaries of the students’ lessons. 
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Chapter 1 

An Introduction to Recurrence Relations 

Recursion is a process in which each step relies on a previous step or set of 

steps.  Sequences of numbers can be defined recursively by means of such a 

relationship, often given by an equation called a recurrence relation.  Recall that a 

sequence is a function whose domain is some set of integers (usually the natural 

numbers N) and whose range is a set of real numbers (Goodaire & Parmenter, 2006, 

p.160).  The numbers in the list (the range of the function) are called the terms of the 

sequence (Goodaire & Parmenter, 2006, p.160).  For example, the sequence of 

numbers  

0,1,2,5,12,29,70,169 ,408,...  

Can be defined with the recurrence relation 

p n = 2 p n −1 + p n − 2
 

Where p0 = 0  and p1 = 1 for all n ≥2 (Goodaire & Parmenter, 2006).  The 

requirements that p 0 = 0, p1 = 1  are known as the initial conditions of the recurrence 

relation.  The rest of the terms in the sequence can be calculated successively using 

the rule above. 

 Sometimes, recurrence relations may be expressed with what is known as a 

closed-form formula (also an explicit formula, or a “solution”) (Goodaire & 

Parmenter, 2006).  For example, a solution to the recurrence relation above is 

pn = 
2

4

 

 
 

 

 
 1+ 2( )n

− 1 − 2( )n 
  

 
   
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For all n ≥0 (Gullberg, 1997, p. 288).  Variety abounds in this subject -- multiple 

recurrence relations and multiple explicit formulas may be given to describe any 

specific sequence.  In this project, we explore the mathematics of finding such 

expressions for recursively-defined sequences. 

Two common types of number sequences are arithmetic and geometric 

sequences.  A term is created in an arithmetic sequence by adding the same fixed 

number (known as the common difference) to the previous term (Goodaire & 

Parmenter, 2006).  For example,  

−4,−2,0,2,4,.....  

Is an arithmetic sequence with a common difference of 2.  An arithmetic sequence 

with the first term a and the common difference d  can be defined recursively by 

a1 = a  and for n ≥1, 

a n +1 = a n + d   

(Goodaire & Parmenter, 2006, p.162). 

 The solution to an arithmetic sequence is  

a n = a + ( n − 1)d  

Where n ≥1 (Goodaire & Parmenter, 2006, p.162). 

A geometric sequence, on the other hand, occurs when each term is created 

by multiplying the previous term with the same number (known as the common 

ratio) (Goodaire & Parmenter, 2006).  For example, 

1
3

,
1
9

,
1

27
,

1
81

,... 
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Is a geometric sequence with a common ratio of 
1
3

.  A geometric sequence with the 

first term a and the common ratio r  can be defined recursively by a1 = a  and for 

n ≥1, 

a n +1 = ra n
 

(Goodaire & Parmenter, 2006, p.163). 

The solution to such a geometric sequence is 

a n = ar n − 1  

Where n ≥1 (Goodaire & Parmenter, 2006, p.163). 

Some authors use the terms difference equation and recurrence relation 

interchangeably (Balakrishnan, 1991, p.95).  While there are no general methods for 

solving all recurrence relations (Balakrishnan, 1991, p.95), in the next chapter, I will 

demonstrate four different techniques for solving certain basic recurrence relations. 



 10 

Chapter 2 

Four Techniques for an Explicit Formula 

2.1:  Guess and Check with the Principle of Mathematical Induction 

 
In this section I will use the Principle of Mathematical Induction with 

recurrence relations to prove that a conjectured solution, or explicit formula, for the 

recurrence relation is indeed correct.  Mathematical Induction is a way to establish 

the truth of a statement about all the natural numbers or, sometimes, all sufficiently 

large integers (Goodaire & Parmenter, 2006, p.147).  The principle of mathematical 

induction states:   

 Given a statement P(n)  concerning the integer n, suppose  

 

  1.  P(n0)  Is true for some particular integer n0
. 

 

  2.  If k ≥ n 0
 is an integer and P(k)  is true, then P(k+1)  is true. 

        Then, P(n)  is true for all integers n ≥ n 0
. 

 

(Goodaire & Parmenter, 2006, p.149).    

 

 

In Step 2, the assumption that P  is true for some particular integer is known as the 

induction hypothesis (Goodaire & Parmenter, 2006, p.149). 

Given a recurrence relation, I will show the first few terms of the sequence, 

guess an explicit formula or a “solution” for the sequence, and show by the Principle 

of Mathematical Induction that this explicit formula is valid. 

 

Example 1.  Consider the sequence defined by a1 = 1  and, for n ≥1, a n = 2 a n −1 + 1  
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(Goodaire & Parmenter, 2006, p.167). 

The first few terms of this sequence can be computed as follows: 

a1 = 1

a2 = 2a2−1 +1 = 2a1 +1 = 2 1( )+1 = 3

a3 = 2a3−1 +1 = 2a2 +1 = 2 3( )+1 = 7

a4 = 2a4 −1 +1 = 2a3 +1 = 2 7( )+1 = 15

a5 = 2a5−1 +1 = 2a4 +1 = 2 15( )+1 = 31

a6 = 2a6−1 +1 = 2a5 +1 = 2 31( )+1 = 63

 

From this data, we can notice the following pattern and guess a formula: 

a1 = 21 −1 =1

a2 = 22 −1 = 3

a3 = 23 −1 = 7

a4 = 24 −1 =15

a5 = 25 −1 = 31

a6 = 26 −1 = 63

∴an = 2n −1,∀n ≥1

 

 

We now use induction to prove that the conjecture a n = 2 n − 1  holds for all n ≥ 1. 

Proof: 

i( )  Base case:  

  For n = 1 → an = 2n −1 → a1 = 21 −1 = 1.  Check 

ii( )  Induction step:     

  Assume a n = 2 n − 1  is true then a n + 1 = 2 n + 1 − 1  is true.  Then   

  
an +1 = 2a n +1( )−1 +1 →2an +1 → 2 2n −1( )+1

→2n +1 − 2 +1 → 2n +1 −1
 

  ∴  By induction a n = 2 n − 1  holds ∀n≥1. 
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Example 2.  Consider the sequence defined by a0 = 2,a1 = 3  and an = 3an −1 − 2an −2   

For n ≥ 2 (Goodaire & Parmenter, 2006, p.167). 

 

The first few terms of this sequence can be computed as follows: 

a0 = 2

a1 = 3

a2 = 3a1 − 2a0 = 3 3( )− 2 2( ) = 5

a3 = 3a2 − 2a1 = 3 5( )− 2 3( ) = 9

a4 = 3a3 − 2a2 = 3 9( )− 2 5( ) =17

a5 = 3a4 − 2a3 = 3 17( )− 2 9( ) = 33 

From this data, we can notice the following pattern and guess a formula: 

a0 = 20 +1 =1

a1 = 21 +1 = 3

a2 = 22 +1 = 5

a3 = 23 +1 = 9

a4 = 24 +1 =17

a5 = 25 +1 = 33

∴an = 2n +1,∀n ≥ 0 

We now use induction to prove that the formula an = 2n +1 holds for all n ≥ 0. 

Proof: 

i( )  Base cases:  

  For n = 0 → an = 2n +1 → a0 = 20 +1 = 2 .  Check 

  For n = 1 → an = 2n +1 → a1 = 21 +1 = 3.  Check. 

 

ii( )  Induction step:    
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  Assume a n = 2 n + 1  is true and a n − 1 = 2 n − 1 + 1  is true, then the   

  recurrence relation a n = 3a n −1 − 2 a n − 2
 becomes: 

 

an +1 = 3a n +1( )−1 − 2a n+1( )−2 →3an − 2an −1

3 2n +1( )− 2 2n −1 +1( )→3 2n +1( )− 2n − 2 →

3 2n +1( )− 2n +1( )−1 → 2n +1( ) 3 −1( )−1 →

2n +1( )2( )−1 →2n+1 + 2 −1 →2n +1 +1

∴an = 2n +1

 n ≥0. 

   

  So the formula holds for ∀ n ≥0. 

 

2.2:  The Characteristic Polynomial 

The method of characteristic polynomials is commonly used to solve a 

recurrence relation when it takes the form 

a n = ra n −1 + sa n − 2 + f n( )  

Where r  and s are constants, and f n( )  is some function of n (Goodaire & Parmenter, 

2006, p.170).  If f n( ) = 0 , then this type is called a second order linear recurrence 

relation with constant coefficients and the relation is called homogeneous (Goodaire 

& Parmenter, 2006, p.170).  If f n( ) ≠ 0  then the recurrence relation is non-

homogeneous.   Such a recurrence relation is second order if it defines an
 as a 

function of the two terms preceding it (Goodaire & Parmenter, 2006, p.170).  It is 

linear because an −1
 and an − 2

 are not multiplied together and they both occur to the 

first power, and, clearly, they have constant coefficients (Goodaire & Parmenter, 

2006, p.171). 

We can rewrite the homogeneous recurrence relation where f (n ) = 0 , as 

a n − ra n −1 − sa n − 2 = 0   
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(Goodaire & Parmenter, 2006, p.170). 

We associate this recurrence relation with the quadratic polynomial  

x 2 − rx − s   

(Goodaire & Parmenter, 2006, p.171). 

This polynomial is the characteristic polynomial of the recurrence (Goodaire & 

Parmenter, 2006, p.171).  In order to solve such recurrence relations, suppose that 

x 1
 and x 2

 are roots of the polynomial x 2 − rx − s , then the solution of the recurrence 

relation is given by 

a n = c 1 x 1
n + c 2 x 2

n  

For some constants c1 and c2, provided that x 1 ≠ x 2  (Goodaire & Parmenter, 2006, 

p.171).  Otherwise, the solution will be 

a n = c 1 x n + c 2 nx n  

If x 1 = x 2 = x  (Goodaire & Parmenter, 2006, p.171).  Below are some examples.  

 

Example 3.  Consider the recurrence relation  

a n = − 5 a n −1 + 6 a n − 2
, 

n ≥2, Given that a0 = 5 , a1 = 8  (Goodaire & Parmenter, 2006, p.174).   

To solve this, we use the method of the characteristic equation for distinct roots. 
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an = −5an −1 + 6an −2

an + 5an −1 − 6an −2 = 0

x1 = −6,x2 =1

an = c1 −6n( )+ c2 1n( )
a0 = 5 →5 = c1 60( )+ c2 10( )
5 = c1 + c2 →equation1

a1 =19 →19 = c1 61( )+ c2 11( )
19 = −6c1 + c2 →equation2

 

Multiplying equation 1 by 6 and adding equation 1 to equation 2 we get:  

30 = 6c1 + 6c2 ← e1

19 = −6c1 + c2 ← e2

c2 = 7,c1 = −2

∴an = −2 −6n( )+ 7 1n( )
 

Where n ≥0.  A better explicit formula would be an = −2 −6n( )+ 7  where n ≥0. Notice 

that 1n( ) is not necessary since for n ≥0, we have that 1n( )= 1 

 

The next recurrence is an example of a second order linear homogeneous 

recurrence relation with repeated roots. 

 

Example 4.  Consider the recurrence relation 

 

an +1 = −8an −16an −1 , 

 

n ≥ 1, Given that a0 = 5,a1 = 17  (Goodaire & Parmenter, 2006, p.175).  To solve this, 

we use the method of the characteristic equation for non-distinct roots. 
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an +1 = −8an −16an −1

an +1 + 8an +16an −1 = 0

x 2 + 8x +16 = 0 → x + 4( )2

x = −4

an = c1 −4n( )+ c2n −4n( )
a0 = 5 →5 = c1 −40( )+ c20 −40( )
5 = c1 →equation1

a1 =17 →17 = c1 −41( )+ c21 −41( )
17 = −4c1 − 4c2 →equation2

 

Substituting equation 1 into equation 2 will result in: 

5 = c1 →equation1

17 = −4c1 − 4c2 →equation2

c1 = 5,c2 = −
37

4

∴an = 5 −4( )n −
37
4

n( ) −4( )n

 

Where n ≥0. 

 

In our final two examples, we will consider non-homogeneous second order 

linear recurrence relations, where f (n ) ≠ 0 .  Let pn
 be any particular solution to the 

recurrence relation 

an = ran −1 + san −2 + f n( ), 

Ignoring initial conditions (Goodaire & Parmenter, 2006, p.172).  Let qn
 be the 

general solution to the associated homogeneous recurrence 

a n = ra n −1 + sa n − 2 , 

Again ignoring initial conditions (Goodaire & Parmenter, 2006, p.172).  Then it is 

easy to check  
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a n = p n + q n  

 Is the general solution to the recurrence relation 

an = ran −1 + san −2 + f n( ) 

 (Goodaire & Parmenter, 2006, p.172). 

The initial conditions determine the constants in an = pn + qn  (Goodaire & 

Parmenter, 2006, p.172).  We illustrate this method first with a simple example. 

 

 

Example 5.  Consider the recurrence relation  

 

an = −2an −1 +15an − 2 + 24 , 

 

n ≥ 2, Given that a0 = 1, a1 = −1 (Goodaire & Parmenter, 2006, p.174).  To solve this, 

we use the method of the characteristic equation for non-homogeneous recurrences.  

We use pn
 to denote a particular solution to the recurrence relation above.  Below, I 

will solve for such a particular solution. 

pn = a + bn

pn = −2 a + b n −1( )[ ]+15 a + b n − 2( )[ ]+ 24 =

−2 a + bn − b( )+15 a + bn − 2b( )+ 24 =
−2a − 2bn + 2b +15a +15bn − 30b + 24 =
a =13a − 28b + 24 →bn =13bn

13b = b →13b − b = 0 →12b = 0 →b = 0

a =13a − 28(0) + 24 →−12a = 24 →a = −2

pn = a + bn →−2 + (0)n → pn = −2

 

Next, we let qn
 denote the general solution to the associated homogeneous 

recurrence relation.  Below I will solve for qn  using the characteristic equation. 
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an = −2an −1 +15an −2

an + 2an −1 −15an −2 = 0

x 2 + 2x −15 = 0 → x + 5( ) x − 3( )
x1 = −5, x2 = 3

qn = c1 −5n( )+ c2 3n( )
an = pn + qn = −2 + c1 −5n( )+ c2 3n( )
a0 =1 →1 = −2 + c1 −50( )+ c2 30( )
3 = c1 + c2 ← equation1

a1 = −1 →−1 = −2 + c1 −51( )+ c2 31( )
1 = −5c1 + 3c2 ← equation2

 

Multiplying equation 1 by 5 and adding to equation 2 results in:  

15 = 5c1 + 5c 2 ← equation 1

1 = −5c1 + 3c 2 ← equation 2

16 = 8c 2 → c 2 = 2

 

Next, substitute c 2
 into the original equation: 

3 = c1 + c2

3 = c1 + 2 →c1 = 1

∴an = −5n( )+ 2 3n( )− 2

 

For all n ≥0. 

 

Finally, we solve a non-homogeneous second order linear recurrence relation 

in which f n( ) ≠ 0  or any other constant, but rather a variable. 

 

Example 6.  Consider the recurrence relation 

an = 5an −1 − 6an − 2 + 3n , 
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Where n ≥2, a 0 = 2, a1 = 14  (Goodaire & Parmenter, 2006, p.183).  Here again, we let 

pn
 denote the particular solution to the recurrence relation above.  Below I will solve 

for the particular solution. 

pn = a + bn

pn = 5 a + b n −1( )( )− 6 a + b n − 2( )( )+ 3n

pn = 5a + 5bn − 5b − 6a − 6bn +12b + 3n

bn = 5bn − 6bn + 3n

bn = −bn + 3n

bn = n −b + 3( )

b = −b + 3 →2b = 3 →b =
3
2

a = 5a − 6a +12b − 5b

a = −a + 7b

2a = 7b

 

2a = 7
3

2

 
 
 
 
 
 →a =

21

4

pn = a + bn →∴ pn =
21

4
+

3

2
n

 

Now that we have the particular solution, we find the general solution to the 

associated homogeneous recurrence, and combine it with the above. 
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an = 5an −1 + 6an −2

an − 5an −1 − 6an −2 = 0

x 2 − 5x + 6

x − 2( ) x − 3( ) = 0 → x1 = 2, x2 = 3

qn = c1 2n( )+ c2 3n( )
an = qn + pn

an =
21
4

+
3
2

n + c1 2n( )+ c2 3n( )

a0 = 2 →2 =
21
4

+
3
2

0( )+ c1 20( )+ c2 30( )
2 =

21
4

+ c1 + c2 →−
13
4

= c1 + c2 ← equation1

a1 =14 →14 =
21

4
+

3

2
1( )+ c1 21( )+ c2 31( )

29
4

= 2c1 + 3c2 ← equation2

 

Multiplying equation 1 by −2 and adding it to equation 2 results in the following: 

26
4

= −2c1 − 2c2 ← equation1

29

4
= 2c1 + 3c2 ← equation2

55
4

= c2

 

Substituting c 2
 back into the original equation 1 results in the following: 

−
13
4

= c1 +
55
4

→c1 = −17

an = pn + qn

∴an =
21
4

+
3
2

n −17 2n( )+
55
4

3n( )
 

For all n ≥0 

 

2.3:  Generating Functions 
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The method of generating functions is another technique to solve recurrence 

relations.  A  generating function for a sequence of numbers is a polynomial or a 

power series that has the terms of the sequence as its coefficients (Goodaire & 

Parmenter, 2006, p.176). A power series is simply treated like a polynomial that 

goes on infinitely.  A finite sequence will have a generating function with an 

expression that is in the form  

f x( ) = a0 + a1x + a2x 2 + a3x 3 + ...+ an xn  

 (Goodaire & Parmenter, 2006, p.176). 

On the other hand, a sequence with infinitely many nonzero terms will have a 

generating function that also has infinitely many nonzero terms.  There is an 

obvious correspondence between generating functions and sequences; that is,  

a0 + a1x + a2 x 2 + a3 x 3 + ...↔ a0,a1,a2a3 ... 

In other words, the generating function of a sequence a 0 , a1, a 2 , ...  is the expression 

f x( ) = a 0 + a1 x + a 2 x 2 + ...  

(Goodaire & Parmenter, 2006, p.176). 

Generating functions can often be expressed as the quotient of polynomials.  

An important example is 

1
1 − x

= 1+ x + x 2 + x 3 + ..., 

Thus 
1

1 − x
 is the generating function for the sequence 1,1,1... (Goodaire & Parmenter, 

2006, p.177).  A variation of this gives another important example: if a∈R and we 

replace x with ax in the above, then we get the following result:  

1
1 − ax

= 1 + ax( )+ ax( )2 + ax( )3 + ... = 1 + ax + a2 x 2 + a3 x 3 + ...,  
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So 
1

1− ax
 is the generating function for the sequence 

1, a, a1, a 2 , a 3 , ...,  

Notice that this is the geometric sequence with first term 1 and common ratio a 

(Goodaire & Parmenter, 2006, p.177,180).  Below are some examples of solving 

recurrence relations using generating functions. 

 

Example 7.  Consider the recurrence relation 

a n = 2 a n −1, n ≥ 1, a 0 = 1 

(Goodaire & Parmenter, 2006, p.181). 

To solve this, we let f(x) be the generating function for the solution sequence and we 

compute as follows: 

f x( ) = an x n

n =0

∞

∑

f x( ) = a0x 0 + 2an −1( )x n

n =1

∞

∑

f x( ) =1+ 2 an −1( )x n

n =1

∞

∑

f x( ) =1+ 2x an −1( )x n −1

n =0

∞

∑

f x( ) = an x n ⇒ f x( ) =1+ 2xf x( )
n =0

∞

∑

f x( )− 2xf x( ) =1 → f x( ) 1− 2x( ) =1

f x( ) =
1

1− 2x
→ f x( ) = 2x( )n → f x( ) = 2n x n

n =0

∞

∑
n =0

∞

∑

∴an = 2n

 

For all n ≥0. 

 



 23 

Example 8.  Consider the recurrence relation 

an = 3an −1 +1, 

For n ≥1, given a0 = 1 (Goodaire & Parmenter, 2006, p.181). 

To solve this, we let f(x) be the generating function for the solution sequence and we 

compute as follows: 

f x( ) = an x n

n =0

∞

∑

a0x 0 + an x n

n=1

∞

∑

1+ 3an −1 +1( )x n

n =1

∞

∑ →1+ 3an −1x
n + x n

n =1

∞

∑
n =1

∞

∑

 

Note that xn

n =1

∞

∑ =
1

1− x
−1, so we have that  
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1+ 3x an −1x
n −1

n =1

∞

∑ +
1

1+ x
−1

 
 
 

 
 
 

f x( ) =1+ 3xf x( )+
1

1− x
−1

f x( )− 3xf x( ) =
1

1− x

f x( ) 1 − 3x( ) =
1

1 − x
→ f x( ) =

1
1 − x( ) 1 − 3x( )

A

1− x
+ B

1 − 3x
=

A 1 − 3x( )+ B 1 − x( )
1− x( ) 1− 3x( )

A − A3x + B − Bx

1− x( ) 1− 3x( ) = f x( )

A − A3x + B − Bx =1+ 0x

A + B + −3A − B( )x =1+ 0x

A + B =1← equation1

−3A − B = 0← equation2

−2A =1 → A = −
1
2

,B =
3
2

f x( ) =
−1 2
1 − x

+
3 2

1 − 3x
→ −

1
2

 
 
 

 
 
 

1
1 − x

 
 
 

 
 
 +

3
2

 
 
 
 
 
 

1
1 − 3x

 
 
 

 
 
 

f x( ) = −
1
2

x n

n =0

∞

∑ +
3
2

3x( )n

n =0

∞

∑

∴an = −
1

2
+

3

2
3n( )

 

 

This next problem is an example of a recurrence relation that is not second 

order and could be solved using the characteristic polynomial, but will be solved 

here using generating functions. 

 

Example 8.  Consider the third-order recurrence relation 

an = an −1 + an − 2 − an − 3 , 

For n ≥ 3  given a0 = 2,a1 = −1,a2 = 3  (Goodaire & Parmenter, 2006, p.182).   



 25 

To solve this, we let f(x) be the generating function for the solution sequence and we 

compute as follows: 

f (x) = a0 + a1x + a2x 2 + a3x 3 + ...+ an x n

xf x( ) = a0x + a1x
2 + a2x 3 + ...+ an −1x

n

x 2 f x( ) = a0x 2 + a1x
3 + ...+ an −2x n

x 3 f x( ) = a0x 3 + ...an −3x n

an − an −1 − an −2 + an −3 = 0

f x( )− xf x( ) − x 2 f x( )+ x 3 f x( ) =

a0 + a1 − a0( )x + a2 − a1 − a0( )x 2 + a3 − a2 − a1 − a0( )x 3

2 + −1− 2( )x + 3 − −1( )− 2( )x 2 + 0 − 3 − −1( )+ 2( )x 3 →2 − 3x + 2x 2

f x( )− xf x( ) − x 2 f x( )+ x 3 f x( ) = 2 − 3x + 2x 2

f x( ) 1 − x − x 2 + x 3( )= 2 − 3x + 2x 2 → f x( ) =
2 − 3x + 2x 2

1 − x − x 2 + x 3( )
f x( ) =

2 − 3x + 2x 2

1+ x( ) 1 − x( )2 →
Ax + B

1 − x( )2 +
C

1+ x( ) =
2 − 3x + 2x 2

1+ x( ) 1− x( )2

Ax + B 1+ x( )+ C 1 − x( )2 = 2 − 3x + 2x 2

Ax + Ax 2 + B + Bx + C − 2Cx + Cx 2 = 2 − 3x + 2x 2

B + C = 2

Ax + Bx − 2Cx = −3

Ax 2 + Cx 2 = 2

 

 

 
 
 

 

 

 
 
 

=
0 1 1 2

1 1 −2 −3

1 0 1 2

 

 

 
 
 

 

 

 
 
 

=
1 0 0 1 4

0 1 0 1 4

0 0 1 7 4

 

 

 
 
 

 

 

 
 
 
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f x( ) =
1 4 x +1 4

1 − x( )2

7 4

1+ x( )

f x( ) =
1
4

x +
1
4

 
  

 
  

1

1 − x( )2

 

 
  

 

 
  +

7
4

1
1+ x

 
 
 

 
 
 

1

1 − x( )2 =
d

dx

1
1 − x

 
 
 

 
 
 

d

dx

1

1 − x

 
 
 

 
 
 =

d

dx
1 − x( )−1 = −1 1 − x( )2 −1( ) =

1

1 − x( )2

1
1 − x

 
 
 

 
 
 =1+ x + x 2 + x 3 + x + ...+ x n

1

1 − x( )2

 

 
  

 

 
  =

d

dx

1
1 − x

 
 
 

 
 
 = 1+ 2x + 3x 2 + 4 x 3 + ...+ n +1( )x n

1
4

x n +1( )x n

n =0

∞

∑
 

 
 

 

 
 +

1
4

+
7
4

−1( )n
x n

n =0

∞

∑

1
4

x n +1( )x n

n =0

∞

∑
 

 
 

 

 
 +

1
4

n +1( )+
7
4

−1( )n 
  

 
  
x n

∴an =
1
4

2n +1( )+
7
4

−1( )n
,∀n ≥ 0

 

 

Example 9.  Consider the recurrence relation 

an = 4an −1 + 5an −2 + 3n  

For n ≥ 2  given a0 = 4,a1 = −1 (Goodaire & Parmenter, 2006, p.183).  To solve this, 

we let f(x) be the generating function for the solution sequence and compute: 

f x( ) = a0 + a1x + a2x 2 + ...+ an x n

4xf x( ) = 4a0x + 4a1x
2 + ...+ an −1x

n

5x 2 f x( ) = 5a0x 2 + ...+ an −2x n

3n = 30 x 0 + 3x + 32 x 2 + 3n x n( )=
1

1− 3x

an − 4an −1 − 5an −2 − 3n = 0

f x( )− 4xf x( )− 5x 2 f x( )−
1

1− 3x
=
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a0 − 30 + a1 − 4a0 − 3( )x + a2 − 4a1 − 5a0 − 32( )x 2 =

4 −1+ −1− 4 4( )− 3( )x + 25 − 4 −1( ) − 5 4( )− 9( )x 2 =

3+ −20x( )

f x( ) 1− 4 x − 5x 2( )=
1

1 − 3x
+ 3 − 20x

1+ 1 − 3x( ) 3 − 20x( )
1 − 3x

=
4 − 29x + 60x 2

1− 3x

f x( ) 1− 4 x − 5x 2( )=
4 − 29x + 60x 2

1 − 3x

f x( ) 4 − 29x + 60x 2

1− 3x( ) 1 − 4x − 5x 2( )
f x( ) =

4 − 29x + 60x 2

1 − 3x( ) 1− 5x( ) 1+ x( )

f x( ) =
4 − 29x + 60x 2

1 − 3x( ) 1− 5x( ) 1+ x( ) =
A

1 − 3x
+

B

1 − 5x
+

C

1+ x

4 − 29x + 60x 2 = A 1 − 5x( ) 1+ x( )+ B 1 − 3x( ) 1+ x( )+ C 1− 3x( ) 1 − 5x( )
= A 1 − 4x − 5x 2( )+ B 1− 2x − 3x 2( )+ C 1− 8x +15x 2( )
A + B + C = 4

−4A − 2B − 8C = −29

−5A − 3B +15C = 60

1 1 1 4

−4 −2 −8 −29

−5 −3 15 60

 

 

 
 
 

 

 

 
 
 

=
1 0 0 −1.125

0 1 0 1.25

0 0 1 3.875

 

 

 
 
 

 

 

 
 
 

=
A = −9 8

B = 5 4

C = 31 8

F x( ) =
−9 8

1 − 3x
+

5 4

1 − 5x
+

31 81

1+ x
−9
8

1
1 − 3x

 
 
 

 
 
 +

5
4

1
1 − 5x

 
 
 

 
 
 +

31
8

1
1+ x

 
 
 

 
 
 =

−9
8

3n x n

n =0

∞

∑ +
5
4

5n x n

n =0

∞

∑ +
31
8

1n x n

n =0

∞

∑ =

−9
8

3n( )+
5
4

5n( )+
31
8

 
  

 
  
x n

n =0

∞

∑

∴an =
−9
8

3n( )+
5
4

5n( )+
31
8

−1( )n
,∀n ≥ 0

 

When n is odd then it is −1 and when n is even then it is 1. 
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2.3:  Linear Algebra 

The term characteristic polynomial, as we have been using it, has its origins in 

linear algebra (Goodaire & Parmenter, 2006, p.171).  The term characteristic 

polynomial is connected to its use in the study of Eigen values (Goodaire & 

Parmenter, 2006, p.174).  Specifically, the recurrence relation  

a n = ra n −1 + sa n − 2
, 

Where r  and s are constants, can be expressed in matrix form  

an

an−1

 

 
 

 

 
 =

r s

1 0

 

 
 

 

 
 

an−1

an−2

 

 
 

 

 
 , 

Which is the same as saying  

v n = Av n −1
, 

Where vn =
an

an −1

 

 
 

 

 
  and A =

r s

1 0

 

 
 

 

 
 .  

(Goodaire & Parmenter, 2006, p.174). 

The characteristic polynomial of this matrix A is  

det
r − x s

1 −x

 

 
 

 

 
 = x2 − rx − s, 

Which is the same as what we have been calling the characteristic polynomial of the 

recurrence relation (Goodaire & Parmenter, 2006, p.174).  Below are some 

examples of the use of linear algebra and the characteristic polynomial to solve 

recurrence relations. 
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Example 10.  Consider the recurrence relation 

an +1 = 3an − 2an −1  

For n ≥ 1 given a0 = −4,a1 = 0  (Goodaire, 2003, p.468).  To solve this, we formulate it 

as a matrix condition: 

vn = An • vn −1

an+1

an

 

 
 

 

 
 =

3 −2

1 0

 

 
 

 

 
 

an

an−1

 

 
 

 

 
 

Anv0 = An
a1

a0

 

 
 

 

 
 = An

0

−4

 

 
 

 

 
 

 

Next, we will get the characteristic polynomial of A by the diagonalization of A. 

A − λI( ) =
3 −2

1 0

 

 
 

 

 
 −

λ 0

0 λ
 

 
 

 

 
 =

3 − λ −2

1 −λ
 

 
 

 

 
 

det A − λI( ) = 3 − λ( ) −λ( )− −2( ) 1( )
λ2 − 3λ + 2 = 0 → λ − 2( ) λ −1( ) →λ1 =1,λ2 = 2

D =
λ1 0

0 λ2

 

 
 

 

 
 =

1 0

0 2

 

 
 

 

 
 

 

The numbers λ1 and λ2 are the Eigen values of A and 
λ1 0

0 λ2

 

 
 

 

 
  is the diagonal form of 

A.  To find the Eigen space for λ1 = 1  we have: 

A − λI( )x = 0

3 − λ1 −2

1 −λ1

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 = 0 →

2 −2

1 −1

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 = 0

2x1 − 2x2 = 0

x1 − x2 = 0

 

Where, x 2 = t1
 is free and x 1 = x 2 = t1

.  This gives us x =
t1
t1

 

 
 
 

 
 = t1

1

1

 

 
 
 

 
 . 

To find the Eigen space for λ2 = 2  we have: 
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A − λI( )x = 0

3 − λ2 −2

1 −λ2

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 = 0 →

1 −2

1 −2

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 = 0

x1 − 2x2 = 0

x1 − 2x2 = 0

 

Where, x 2 = t 2
 is free and x1 = 2 x 2 = 2 t 2

.  This gives us x =
2t2

t2

 

 
 

 

 
 = t2

2

1

 

 
 
 

 
 . 

Next, we will write the matrices P , P − 1 , D  to solve for A. 

P =
t1 t2

t1 t2

 

 
 

 

 
 =

1 2

1 1

 

 
 

 

 
 

D =
1 0

0 2

 

 
 

 

 
 

 

The matrix P −1 is obtained by observing that if P =
a b

c d

 

 
 

 

 
 =

1 2

1 1

 

 
 

 

 
  then P −1 is  

P−1 =
1

ad − bc

d −b

−c a

 

 
 

 

 
 →

1

1( ) 1( )− 2( ) 1( )
1 −2

−1 −1

 

 
 

 

 
 

P−1 = −
1 −2

−1 1

 

 
 

 

 
 →

−1 2

1 −1

 

 
 

 

 
 

P−1AP = D⇒ A = PDP−1

vn = Anv0 = PDP−1( )v0 = PDP−1( ) 0

−4

 

 
 

 

 
 

P−1v0 =
−1 2

1 −1

 

 
 

 

 
 

0

−4

 

 
 

 

 
 =

−8

4

 

 
 

 

 
 

PDn =
1 2

1 1

 

 
 

 

 
 

1 0

0 2n

 

 
 

 

 
 =

1 2n +1

1 2n

 

 
 

 

 
 

vn = PDn • P−1v0

vn =
1 2n +1

1 2n

 

 
 

 

 
 

−8

4

 

 
 

 

 
 =

−8 + 4 2n +1( )
−8 + 4 2n( )

 

 
 
 

 

 
 
 

an +1

an

∴an = −8 + 4 2n( )

 

A better explicit formula is an = 4 −2 + 2n( )[ ] for all n ≥0. 
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Example 11.  Consider the recurrence relation 

an +1 = an +12an −1 

For n ≥ 1 given a1 = −8,a2 = 1 (Goodaire, 2003, p.468).  To solve this, we first compute 

the natural initial condition: 

a2 = a1 + 12a0 →1 = −8 + 12a0 → 9 = 12 a0

9
12

= a0 →
3
4

= a0
 

Next we formulate the problem in terms of matrices: 

vn = An • vn−1

an+1

an

 

 
 

 

 
 =

1 12

1 0

 

 
 

 

 
 

an

an−1

 

 
 

 

 
 

Anv0 = An
a1

a0

 

 
 

 

 
 = An

−8

3 4

 

 
 

 

 
 

 

Next, we will get the characteristic polynomial of A by the diagonalization of A. 

A − λI( ) =
1 12

1 0

 

 
 

 

 
 −

λ 0

0 λ
 

 
 

 

 
 =

1− λ 12

1 −λ
 

 
 

 

 
 

det A − λI( ) = 1− λ( ) −λ( )− 12( )1( )
λ2 − λ −12 = 0 → λ − 4( ) λ + 3( )→λ1 = −3,λ2 = 4

D =
λ1 0

0 λ2

 

 
 

 

 
 =

−3 0

0 4

 

 
 

 

 
 

 

The numbers λ1 and λ2 are

 

Eigenvalues of A and 
λ1 0

0 λ2

 

 
 

 

 
  is the diagonal form of A.  

To find the Eigen space for λ1 = −3  we have: 
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A − λI( )x = 0

1− λ1 12

1 −λ1

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 = 0 →

4 12

1 3

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 = 0

4x1 +12x2 = 0

x1 + 3x2 = 0

 

Where, x 2 = t1
 is free and x 1 = − 3 x 2 = − 3 t1

.  This gives us x =
−3t1

t1

 

 
 

 

 
 = t1

−3

1

 

 
 

 

 
 . 

To find the Eigen space for λ2 = 4  we have: 

A − λI( )x = 0

1− λ2 12

1 −λ2

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 = 0 →

−3 12

1 −4

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 = 0

−3x1 +12x2 = 0

x1 − 4x2 = 0

 

Where, x 2 = t 2
 is free and x1 = 4 x 2 = 4 t 2

.  This gives us x =
4t2

t2

 

 
 

 

 
 = t2

4

1

 

 
 
 

 
 . 

Next, we will write the matrices P , P − 1 , D  to solve for A. 

P =
t1 t2

t1 t2

 

 
 

 

 
 =

−3 4

1 1

 

 
 

 

 
 

D =
−3 0

0 4

 

 
 

 

 
 
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The matrix P −1 is obtained by noticing that if P =
a b

c d

 

 
 

 

 
 =

−3 4

1 1

 

 
 

 

 
  then P −1 is 

P−1 =
1

ad − bc

d −b

−c a

 

 
 

 

 
 →

1

−3( ) 1( )− 4( ) 1( )
1 −4

−1 −3

 

 
 

 

 
 

P−1 = −
1

7

1 −4

−1 −3

 

 
 

 

 
 →

1

7

−1 4

1 3

 

 
 

 

 
 

P−1AP = D⇒ A = PDP−1

vn = Anv0 = PDP −1( )v0 = PDP −1( ) −8

3 4

 

 
 

 

 
 

P−1v0 =
1

7

−1 4

1 3

 

 
 

 

 
 

−8

3 4

 

 
 

 

 
 =

1

7

11

−23 4

 

 
 

 

 
 

PDn =
−3 4

1 1

 

 
 

 

 
 

−3n 0

0 4n

 

 
 

 

 
 =

−3n +1 4n +1

−3n 4n

 

 
 

 

 
 

vn = PDn • P−1v0

vn =
1

7

−3n +1 4n +1

−3n 4n

 

 
 

 

 
 

11

−23 4

 

 
 

 

 
 =

1

7

11 −3n +1( )+ −
23
4

4 n +1( )
11 −3n( )+ −

23

4
4 n( )

 

 

 
 
 

 

 

 
 
 

an +1

an

∴an =
1
7

11 −3n( )−
23
4

4n( ) 
  

 
  

 

 For all n ≥0. 
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Chapter 3 

John Pell:  An “obscure” English Mathematician 

(Webster, 2006) 

John Pell (1611-1685) has been considered the most enigmatic of the 

seventeenth-century mathematicians (Steadall, 2002, p.126).  He is a significant 

figure in the intellectual history of 17th century Europe not because of his published 

work but more because of his activities, contacts and correspondence (Malcolm, 

2000, p.2).  He was well read in classical and contemporary mathematics, but does 

not have much of a following or reputation among mathematicians because he 

hardly published anything (Steadall, 2002, p.126).  From the few books and papers 

that he did publish, the one that is best known is an “Introduction to Algebra,” 

published in 1668 (Steadall, 2002, p.126).  During his adult life, Pell had 

correspondence with Descartes, Leibniz, Cavendish, Mersenne, Hartlib, Collins and 

others (Steadall, 2002, p.127).  

 One of Pell’s main mathematical focuses was making and studying 

mathematical tables (Steadall, 2002, p.127).  He particularly liked tables of squares, 

sums of squares, primes and composites, constant differences, logarithms, 

antilogarithms, trigonometric functions, as well as many others (Steadall, 2002, 

p.127-128).  Pell liked to be anonymous, as is evident by the many booklets that he 

created of his tables (Steadall, 2002, p.128).  The tables all had a title page, but he 

did not list himself as the author (Steadall, 2002, p.128).  Only one of his tables was 

ever published in 1672, which was a table of the first 10,000 square numbers 
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(Steadall, 2002, p.148).  Pell’s fascination with tables continued with tables of 

primes and composites. The first fair-sized tables of primes and composites, giving 

the least prime factors not divisible by 2 or 5, was published by J.H. Rahn as an 

appendix to his Teusche Algebra (1659) (Burton, 2011, p.507).  Pell extended this 

table to include numbers up to 100,000 (Burton, 2011, p.507). In regards to tables, 

Pell also worked with Walter Warner, who was the last surviving member of 

Thomas Hariot’s inner circle (Malcolm, 2000).  Pell had an ambitious project, which 

they worked on together, which was the construction of tables of antilogarithms 

(Steadall, 2002, p.131).  Warner died in 1643 before the calculations where finished 

and Pell went on to other things (Steadall, 2002, p.132). 

In Pell’s best-known published work, “An Introduction to Algebra”, he 

explains the rules and notation for handling and simplifying equations (Steadall, 

2002, p.136).  After that, the remaining and greater part of the book is devoted to 

“The Resolution of divers Arithmetical and Geometrical Problemes” (Steadall, 2002, 

p.137).  It is in this book that the division symbol appears ÷ (Steadall, 2002, p.137).   

In another work, “Idea of Mathematics”, it presents evidence confirming Pell’s 

responsibility for the introduction of the division sign ÷ (Malcolm, 2000, p.2).  

During his three years of teaching in Amsterdam (1643-1646) much of his time and 

energy went into refuting “A Quaduture of the Circle” published by the Danish 

mathematician Longomontanus (Steadall, 2002, p.132).  His efforts led him to the 

discovery of the double-angle tangent formula: tan 2θ =
2 tanθ

1 − tan 2 θ
 (Steadall, 2002, 

p.132). 
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John Pell, at least in name, is probably best known for the Pell Sequence and 

the Pell Equation.  Although the Pell Sequence is named after John Pell, I could not 

find any other good definitive published material that he actually studied and 

contributed to this sequence extensively (Gullberg, 1997, p.288).  He is best known 

though, probably for the Pell Equation, which is mistakenly named after him by 

Euler (Sandifer, 2007, p.63).  Pell lived about one hundred years earlier than Euler 

(Sandifer, 2007, p.63).   Much of elementary number theory has its roots in Euler 

who cites as his inspiration the works of Fermat, Diophantus, Goldbach and Pell 

among others (Sandifer, 2007, p.63).  As James Tattersall states, “Euler after a 

cursory reading of Wallis’s Opera Mathematica mistakenly attributed the first 

serious study of non-trivial solutions to equations of the form x 2 − dy 2 = 1  where 

x ≠ y  and y ≠ 0  to John Pell, mathematician to Oliver Cromwell.” (Tattersall, 2005, 

p.274).  I found numerous books about the Pell Equation that state that Euler 

mistakenly named the equation after Pell.  

John Pell was married and had eight children.  He had constant financial 

trouble throughout his life and was twice imprisoned for unpaid debts (Malcolm, 

2000).  He taught at the Gymnasium in Amsterdam  (1643-1646) and from 1654-

1658 he was Cromwell’s envoy to Switzerland. 

 In the end as I have studied John Pell I come away with the impression of a 

man who loved reading, studying, working on projects, teaching, corresponding and 

working with mathematics.  He is not well known in the history of math because of 

his desire to be anonymous and for his lack of publishing with significant 

importance and with very little material published.  He seems to have a reputation 
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in life as well as in death as a mathematician who was easily distracted, had multiple 

projects going on at once and had many unfinished projects.  He had 

correspondence and was held with high regard, as stated earlier, by his 

contemporaries in England as well as Continental Europe.  Within this group though, 

he was a minor figure with not much notoriety.  He loved mathematical tables and 

table making.  In summation, he is best known for the Pell Sequence, Pell Equation, 

the division sign and the double-angle tangent formula, of which the first two he did 

not have a significant role in contributing to the study of the topic.   

Because Pell liked to remain anonymous he did not publish as much as his 

contemporaries and to this day is one of the more “obscure” mathematicians 

(Webster, 2006).  But, in spite of everything, he dedicated a large part of his life to 

mathematics and for that he is recognized. 
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Chapter 4 

The Pell Sequence, its history and some amazing 

properties 
 

4.1 The Pell Sequence:  History and Properties 

The Pell Sequence, also known as the sequence of Pell Numbers, is found in 

the Encyclopedia of Integer Sequences under the code of M1413 (Sloane & 

Plouffe, 1995).  It is defined by the recurrence relation of,  

pn = 2 pn −1 + pn − 2  

With the initial conditions of p0 = 1 and p1 = 2  (Goodaire & Parmenter, 2006, p.182) 

This generates the sequence of  

1,2,5,12,29,70,169,408,... 

With a closed-form formula of  

pn =
2 + 2

4
1+ 2( )n

+
2 − 2

4
1 − 2( )n

 

For all n ≥0.  In the next section, we will deduce this expression using our four 

techniques for solving recurrences.  In this chapter, however, our goal is simply to 

give the reader a tour of some fascinating properties of this sequence, primarily 

without proof. Before we begin, however, we remark that sometimes the initial 

conditions are defined as p0 = 0  and p1 = 1 .  A shorter version of the previous formula 

is  

pn ≈
2 + 2

4
1+ 2( )n
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For all n ≥0 (Goodaire & Parmenter, 2006, p.182).  This formula is not exact, but it 

will give us a value closest to the nearest integer in the sequence.  The Pell Sequence 

is named after the English mathematician of the seventeenth century, John Pell 

(Gullberg, 1997, p.288). 

The Fibonacci Sequence, when represented geometrically, is closely related 

to a rectangle known as the “Golden Rectangle” (Bicknell, 1975, p.345).  The 

equation that defines the Pell Numbers, when represented geometrically, can be 

similarly associated with a rectangle, which is often referred to as the “Silver 

Rectangle.” In this rectangle, the ratio of length to width is denoted by length y  and 

width 1 (Bicknell, 1975, p.345).  When the two squares with the side equal to the 

width are taken out of the rectangle, the rectangle that remains has the same ratio of 

length to width as did the original rectangle (Bicknell, 1975, p.345).   

 

(Bicknell, 1975, p.346, image) 

Algebraically, this ratio can be represented by the proportion  

y

1
=

1
y − 2

. 
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Solving this leads to the consideration of the quadratic 

y 2 − 2 y − 1 = 0 ,  

Which leads to the dominant root y =
2 + 8

2

 

 
 

 

 
   

(Bicknell, 1975, p.345). 

 Some interesting facts about the Pell Numbers can be deduced from the 

explicit formula.  For example: 

• The only triangular Pell Number is 1 (McDaniel, 1996). 

• The largest proven prime has an index of 13, 339  with 5,106  digits (Weisstein, 

2011). 

• The largest known probable prime has an index of 90,197  with 34,525  digits 

(Weisstein, 2011). 

•  For a Pell Number Pn
 to be prime, n has to be prime as well (Weisstein, 

1999-2011).  

• The only Pell Numbers that are squares, cubes or any other power higher are 

0,1,169  (Cohn & Pethos, 1992, 1996).   

• The Pell Numbers or Pell Sequence 1,2,5,12,29,70,169,408,... are the 

denominators of fractions that are the closest rational approximations to the 

square root of 2 (Flannery, 2006).    

This last point may require a bit of illustration. For example, the digits of the square 

root of two are 2 = 1 .414214 .... , but the method of continued fractions gives the 

following sequence of rational approximations: 

1
1

,
3
2

,
7
5

,
17
12

,
41
29

,
99
70

,... 
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Which continually get closer to 2  (Flannery, 2006).  There are many patterns in 

this fractional sequence, but the most obvious here is that the denominators are the 

Pell numbers! Below we list some other intriguing patterns in this sequence of 

fractions that are related to the Pell sequence. 

• The sum of the numerator and denominator of the previous term is the 

denominator of the current term.  For example, 3+2 =5 which includes the 

fractions in the sequence 
3
2

,
7
5

 (Flannery, 2006).    

• The numerator of the current fraction is the sum of the numerator and two 

times the denominator of the previous fraction.  For example, if we take the 

two fractions in the sequence, 
7
5

,
17
12

 then 7 + 2 • 5( ) = 17 .  Symbolically this 

can be defined as 
m

n
→

m + 2n

m + n
 where 

m

n
 is the current term and the next 

term will be 
m + 2n

m + n
 (Flannery, 2006, p.118). 

• Since each fraction in the sequence is represented by 
m

n
 then each fraction of 

the sequence will either follow m 2 = 2 n 2 − 1 → m 2 − 2 n 2 = −1  or 

m 2 = 2 n 2 + 1 → m 2 − 2 n 2 = 1 (Flannery, 2006, p.80). 

For example, 
1
1

→12 − 2 1( )2 = −1,
3
2

→ 32 − 2 2( )2 = 1, etc. with each fraction thereafter 

alternating between 1 and −1 (Flannery, 2006, p.80). To see this, note that  

m + 2n( )2 − m + n( )2 → m 2 + 4mn + 4n 2( )− 2 m 2 + 2mn + n 2( )→ m 2 + 2n 2  

So either −m 2 − 2n 2 = − m 2 − 2n 2( ) produces a result of 1 or −1 (Flannery, 2006, p.82).    

Below is m2 isolated on the right side of the equation (Flannery, 2006, p.21). 
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12 = 2 1( )2 −1

12 = 2 2( )2 +1

12 = 2 5( )2 −1

12 = 2 12( )2 +1

12 = 2 29( )2 −1

12 = 2 70( )2 +1

 

Then, if we divide both sides by n2 or the numbers in the Pell Sequence we get  

1

1

 
 
 
 
 
 

2

= 2 −
1

12

3

2

 
 
 
 
 
 

2

= 2 −
1

22

7
5

 
 
 
 
 
 

2

= 2 +
1
52

17
12

 
 
 

 
 
 

2

= 2 −
1

122

41

29

 
 
 

 
 
 

2

= 2 +
1

292

99

70

 
 
 

 
 
 

2

= 2 −
1

702
 

(Flannery. 2006, p.22) 

These alternating fractions will either be above or below the 2 .  The fractions 

1
1

,
7
5

,
41
29

, are below the 2  and 
3
2

,
17
12

,
99
70

, are above the 2 .  Each successive fraction 

is a better approximation to the 2  (Flannery, 2006, p.24-25). 

• There is a recurrence relation that will also work for the numerators as well 

in the sequence, p n = 2 p n −1 + p n − 2
 where p 0 = 1, p1 = 3 .  The numerators in the 

sequence are 1,3,7,17,41,99,239,577,... each successive term in the Pell 
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sequence 1,2,5,12,29,70,169,408,... is the denominator in the fractional 

sequence.   

This can produce the numerator of the fractional sequence to the nearest integer if 

you multiply each number in the denominator by 2  (Flannery, 2006, p.191).  For 

example, 
1
1

 will be 2 = 1 .41421 ...  which is approximately 1, 3
2

 will be 

2 2 = 2 .82843 ...  which is approximately 3 and 
7
5

 will be 5 2 ≈ 7 .071 ...  which is 

approximately 7 (Flannery, 2006, p.191). 

• Starting with 
1
1

, we can generate each successive term in the sequence if we 

take 
m

n
→

m + 2n

m + n
 and if we use the rule 

m

n
→

3m + 4 n

2m + 3n
 beginning with 

1
1

 this 

will give us the fraction immediately after 
m + 2n

m + n
. (Flannery, 2006, p.117). 

Some identities that might be of interest include the generating function  

1

1− 2x − x 2 = Pn x n

i=1

∞

∑  

And  

pn
2 =

Pn Pn +1

2
. 

(Bicknell, 1975, p.346).    

A matrix can also generate the Pell Numbers,  

M =
2 1

1 0

 

 
 

 

 
 
 

 And  
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M n =
Pn +1 Pn

Pn Pn −1

 

 
 

 

 
 . 

(Bicknell, 1975, p.347). 

An identity from the matrix is,  

det M n = det M( )n = −1( )n = Pn +1Pp +1 + PnPp  

(Bicknell, 1975, p.347).     

There is also a relationship between the Pell Sequence and the Pell Equation.  If we 

define the Pell Equation as  

x 2 + 2y 2 = ±1 

And if 

x = pn +1 − pn  

And 

y = pn , 

Then x and y  will satisfy the Pell Equation (Ayoub, 2002).  In other words, if we 

take any two consecutive terms of the Pell Sequence, then their difference and the 

smaller one will satisfy one of the Pell Equations (Ayoub, 2002). 

 

• The proportion 2 :1  or 
99
70

 is used in paper sizes A3, A4 and others.  For 

example, the A4 paper size is 3 times 
99
70

 or 297 × 210 mm  or the standard 

11 .7 × 8.3 which is more commonly known as 8.5 × 11  paper (Michell & 

Brown, 2009, p.133). 
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4.2:  Solving the Pell sequence using 4 techniques 

In this section I will use the 4 techniques from Chapter 2 to solve the Pell 

Sequence:  Guess and Check with Induction, Characteristic Polynomial, Generating 

Functions and Linear Algebra. 

 

1) The Characteristic Polynomial 

 The Pell Sequence is defined by p0 = 1 and p1 = 2  with p n = 2 p n −1 + p n − 2
 for n ≥2 

which generates a sequence of 1,2,5,12,29,70,169,408,... (Goodaire & Parmenter, 

2006, p.182). 

Solution: 

pn = 2pn −1 + pn −2 → pn − 2pn −1 − pn −2 = 0 →

x 2 − 2x −1 = 0 →a =1,b = −2,c = −1

x =
−b ± b2 − 4ac

2a
=

− −2( )± −2( )2 − 4 1( ) −1( )
2 1( ) = 1± 2( )

x1 = 1+ 2( ),x2 = 1− 2( )
pn = c1 x1

n( )+ c2 x2
n( )⇒ pn = c1 1+ 2( )n

+ c2 1− 2( )n

p0 =1 →1 = c1 1+ 2( )0
+ c2 1 − 2( )0

→1 = c1 + c2 ← equation1

p1 = 2 →2 = c1 1+ 2( )1
+ c2 1− 2( )1

→2 = c1 1+ 2( )+ c2 1− 2( )← equation2

 

Multiply equation 1 by − 1 + 2( ) and then add to equation 2 resulting in: 

c1 =
2 + 2

4
. 

Then substitute c 1
 into equation 1 resulting in  

c 2 =
2 − 2

4
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∴  pn =
2 + 2

4
1 + 2( )n

+
2 − 2

4
1 − 2( )n

 ∀ n ≥0. 

A better formula or shortened version would be  

pn ≈ 2 + 2
4

 

 
 

 

 
 1+ 2( )n

 ∀ n ≥0 

Which will give us an answer to the closest integer in the Pell Sequence (Goodaire & 

Parmenter, 2006, p.182). 

2) Generating Functions 

The Pell Sequence is defined by p 0 = 1, p1 = 2, p 2 = 5  and 

pn = 2 pn −1 + pn − 2 → pn − 2 pn −1 − pn − 2 = 0  

Solution: 

f x( ) = an xn
n =0

∞

∑

f x( ) = a0 + a1x + a2x 2 + ...+ an x n

2xf x( ) = 2a0x + 2a1x
2 + ...+ an −1x

n

x 2 f x( ) = a0x 2 + ...+ an −2x n

f x( )− 2xf x( )− x 2 f x( ) =

a0 + a1 − 2a0( )x + a2 − 2a1 − a0( )x 2

1+ 2 − 2 1( )( )x + 5 − 2 2( )−1( )x 2 =1

f x( ) 1− 2x − x 2( )=1 → f x( ) =
1

1 − 2x − x 2

a = −1,b = −2,c =1 → x =
−b ± b2 − 4ac

2a

x =
− −2( )± −2( )2 − 4 −1( ) 1( )

2 −1( ) → x = −1 ± 2

A

−1− 2( )− x[ ]+
B

−1+ 2 − x( )[ ]=
1+ 0x

1− 2x − x 2
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A −1+ 2( )− x[ ]+ B −1− 2( )− x[ ]=1+ 0x

A −1+ 2( )− Ax + B −1 − 2( )− Bx =1+ 0x

equation1 →−A − B = 0

equation2 → A −1+ 2( )+ B −1− 2( )=1

 

Multiply equation 1 by −1 + 2( ) and add to equation 2. 

−B −1+ 2( )+ B −1 − 2( )= 1

−B −1+ 2( )− −1 − 2( )[ ]= 1

−B 2 2( )= 1 →B = −
1

2 2
= −

2
4

 

Substitute B back into equation 1: 

A =
2

4

2
4

1

−1 − 2( )− x

 

 
 
 

 

 
 
 −

2
4

1

−1+ 2( )− x

 

 
 
 

 

 
 
 

sidenote

1
a − x

=
1 a

1 a

 

 
 

 

 
 =

1 a

1 − x a( )
 

 
  

 

 
  =

1
a

1

1− x a( )
 

 
  

 

 
  =

1
a

1+
x

a

 
 
 
 
 
 +

x

a

 
 
 
 
 
 

2

+
x

a

 
 
 
 
 
 

3

+ ...
 

 
 

 

 
 =

1
a

 
 
 
 
 
 • a−n

sidenote

=
2

4
1

−1− 2

 
 
 

 
 
 

1

−1− 2

 
 
 

 
 
 

n

−
2

4
1

−1+ 2

 
 
 

 
 
 

1

−1+ 2

 
 
 

 
 
 

n

=
2

4

−1+ 2

−1

 

 
 

 

 
 

−1+ 2

−1

 

 
 

 

 
 

n

−
2

4

−1− 2

−1

 

 
 

 

 
 

−1− 2

−1

 

 
 

 

 
 

n

=
2

4
1− 2( )n +1

−
2

4
1+ 2( )n +1

=
2

4
1− 2( )n +1

− 1+ 2( )n +1 
  

 
  ,∀n ≥ 0
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3) Linear Algebra 

The Pell Sequence can also be defined by p0 = 0  and p1 = 1 with 

p n = 2 p n −1 + p n − 2
 for n ≥2 which generates a sequence of 

0,1,2,5,12,29,70,169 ,408,...  

 (Burton, 2002, p.332) 

Solution: For the linear algebra approach, we phrase it in matrix terms: 

pn +1

pn

 

 
 

 

 
 =

2 1

1 0

 

 
 

 

 
 =

pn

pn −1

 

 
 

 

 
 

vn = An • vn −1

Anv0 = An
p1

p0

 

 
 

 

 
 = An

2

1

 

 
 
 

 
 ← v0

 

Next, we will find the characteristic polynomial by the diagonalization of A. 

A − λI( ) =
2 1

1 0

 

 
 

 

 
 −

λ 0

0 λ
 

 
 

 

 
 =

2 − λ 1

1 −λ
 

 
 

 

 
 

det A − λI( ) = 2 − λ( ) −λ( ) − 1( ) 1( ) →λ2 − 2λ −1

a = 1,b = −2,c = −1 → x =
−b ± b2 − 4ac

2a

x =
2 ± 4 − 4 1( ) −1( )

2
→

2 ± 8

2
→

2 ± 2 2

2

x = 1 ± 2 →λ1 =1+ 2,λ2 = 1− 2

 

The numbers λ1 and λ2 are Eigen values of A and λ1 = 1 + 2 , λ 2 = 1 − 2 .  To find the 

Eigen space for λ1 = 1 + 2  we do the following: 

2 − λ1 1

1 −λ1

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 =

0

0

 

 
 
 

 
 

2 − λ1( )x1 + x2 = 0

x1 − λ1x2 = 0

 

 Where x2 = t  is free.  This leads to 



 49 

x1 = λ1x2 = λ1t → x =
λ1t

t

 

 
 

 

 
 = t

λ1

1

 

 
 

 

 
  

To find the Eigen space for λ 2 = 1 − 2  we do the following: 

2 − λ2 1

1 −λ2

 

 
 

 

 
 

x1

x2

 

 
 

 

 
 =

0

0

 

 
 
 

 
 

2 − λ2( )x1 + x2 = 0

x1 − λ2 x2 = 0

 

Where x2 = t  is free.  This leads to 

x1 = λ2x2 = λ2t = x =
λ2t

t

 

 
 

 

 
 = t

λ2

1

 

 
 

 

 
  

Next, we define  

P =
λ1 λ2

1 1

 

 
 

 

 
    And    D =

λ1 0

0 λ2

 

 
 

 

 
  

And we compute that 

P −1 =
1

λ1 − λ2

1 −λ2

−1 λ1

 

 
 

 

 
  

Then, the powers of A can be computed using this diagonal form: 
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PDn =
λ1 λ2

1 1

 

 
 

 

 
 

λ1
n 0

0 λ2
n

 

 
 

 

 
 =

λ1
n +1 λ2

n +1

λ1
n λ2

n

 

 
 

 

 
 

vn = PDn =
1

2 2

λ1
n +1 λ2

n +1

λ1
n λ2

n

 

 
 

 

 
 

2 − λ2

−2 + λ1

 

 
 

 

 
 

vn =
1

2 2

2λ1
n +1 − λ2 λ1

n +1( )+ −2λ2
n +1( )+ λ2

n +1 λ1( )
2λ1

n − λ2 λ1
n( )+ −2λ2

n( )+ λ2
n λ1( )

 

 
 
 

 

 
 
 

an +1

an

p(n) =
1

2 2
λ1

n 2 − λ2( )+ λ2
n −2 + λ1( )[ ]

p(n) =
1

2 2
λ1

n 2 − 1 − 2( )( )+ λ2
n −2 +1+ 2( ) 

  
 
  

p(n) =
1

2 2
1+ 2( )n

1+ 2( )+ 1 − 2( )n

−1+ 2( ) 
  

 
  

p(n) =
1+ 2

2 2

 

 
 

 

 
 1+ 2( )n

+ 1 − 2( )n −1+ 2

2 2

 

 
 

 

 
 

 

 
 
 

 

 
 
 

p(n) =
2 + 2
4

 

 
 

 

 
 1+ 2( )n

+ 1 − 2( )n − 2 + 2
4

 

 
 

 

 
 

 

 
 
 

 

 
 
 

 

 

4) Guess and Check with Induction 

The desired sequence is defined recursively by p ( n ) = 2 p n −1 + p n − 2
 where 

p0 = 0  and p1 = 1 (Burton, 2002, p.332).  The first 9 terms are 

0,1,2,5,12,29,70,169 ,408,...  A formula that was found using the characteristic 

polynomial is 

p(n) =
2

4

 

 
 

 

 
 1+ 2( )n

− 1 − 2( )n 
  

 
   For all n ≥0. 

As is always the case when we wish to verify a formula for a recursively-defined 

sequence, we can attempt to do so using mathematical induction. 

i( ) Base case(s).   When n =0 
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p(n) =
2

4

 

 
 

 

 
 1+ 2( )0

− 1 − 2( )0 
  

 
  = 0  

And when n =1 

p(n) =
2

4

 

 
 

 

 
 1+ 2( )1

− 1 − 2( )1 
  

 
  = 1 

ii( ) Induction Step: (Burton, 2002, p.332) To show 

pn =
2

4
1+ 2( )n

− 1 − 2( )n 
  

 
   Or 

2
4

α n − βn( ) 

Where α = 1 + 2  and β = 1 − 2  

Assume:  pn =
2

4
α n − βn( ) for 0 ≤ n ≤ k  

Then 

2pn −1 + pn −2 = 2
2

4
α n −1 − βn −1( )

 

 
 

 

 
 +

2
4

α n −2 − βn −2( )
 

 
 

 

 
 

=
2

4
2α n −1 − 2βn −1 + α n −2 − βn −2[ ]

=
2

4
2α n −1 + α n −2 − 2βn −1 − βn −2[ ]

=
2

4
α n −2 2α +1( )− βn −2 2β +1( )[ ]

 

Side note: 

2α +1 →2 1+ 2( )+1 = 2 + 2 2 +1 = 3 + 2 2

α 2 → 1+ 2( )2
= 1+ 2 2 + 2 = 3 + 2 2

 

Back to the proof: 

Since α 2 = 2α + 1and β 2 = 2β + 1  then, 
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=
2

4
α n −2α 2 − βn −2β2[ ]

=
2

4
α n − βn[ ]

= pn  

 4.3:  An Alternate Explicit Formula for the Pell Sequence  

 The Mathematical Association of America (MAA) publishes a popular small 

journal called the American Mathematical Monthly.  In it, (AMM, April 2000, p.370-

371) they describe a fascinating alternate explicit formula for the Pell Sequence.  

Below is the formula as well as three proofs verifying the formula. 

 

10663 [1998, 464].  Proposed by Emeric Deutsch, Polytechnic University, Brooklyn, 

NY.  For all n ≥0, the Pell numbers are given by the expression 

pn =
i + j + k( )!

i! j!k!
∑  

Where the summation extends over all nonnegative integers i, j , k  satisfying 

i + j + 2 k = n . 

 

Solution I by Harris Kwong, State University of New York, Fredonia, NY.   

Let pn
 count the ways to fill a n-foot flagpole.  The colors we will use to 

represent this are red, white, and blue flags.  The white flags are two feet tall, blue 

are 1 feet tall, and red are 1 feet tall.  We will equate i, j , k  with each flag, red = i , 
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blue = j , and white = k .  This yields p 0 = 1, p1 = 2  and for n ≥2 the recurrence follows 

by looking at the options for the last flag. 

 To fill the pole with i red flags, j  blue flags, and k  white flags, we will use the 

condition that i + j + 2 k = n .  The number of ways to arrange these flags is 
i + j + k( )!

i! j!k!
.  

If we sum over the choices of i, j , k  with i + j + 2 k = n  results in pn
 (Kwong, April 

2000,AMM, p.370). 

 If all of the flags are 1 foot flags, meaning all blue, all red, or any combination 

of the two, then there are 3n  possibilities or 36 = 729  possibilities.  Another situation 

arises if we consider for all cases what flag is on top of the flagpole.  Case 1: If a blue 

flag is on top then anything underneath it will be pn − 1.  Case 2: If a red flag is on top 

then once again anything underneath it is pn − 1.  Case 3: If it is a white flag then 

anything underneath it will be pn − 2 .  This yields the desired recurrence relation, 

p n = 2 p n −1 + p n − 2
 where 2 p n − 1 = r , b  and pn − 2 = w .  Below are some examples on how 

this would work on a case-by-case basis. 

1) When n = 0  then p0 =1 and the only triple i, j,k  that satisfies 

i + j + 2k = 0  Is (0,0,0) . 

There is only one way to have a zero foot flagpole if all flags are zero feet tall. 

2) When n = 1 then p1 = 2  and two triples i, j,k  satisfy 

i + j + 2k = 1 → (1,0,0)  And 0,1,0( ) 

 There are only two ways to fill a one-foot flagpole either with one blue flag or one 

red flag.  
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3) When n = 2  then p2 = 5 and four triples i, j,k  satisfy i + j + 2k = 2 , they are 

2,0,0( ), 0,2,0( ), 0,0,1( ), 1,1,0( ) with 1,1,0( ) having two options either blue or red on top. 

There are five ways to fill a two-foot flagpole.  The options are: a) two red, zero blue, 

zero white.  b) One red, one blue, zero white.  c) Zero red, two blue, zero white.  d) 

Zero red, zero blue, one white.  e) One blue, one red, zero white.  All other n-foot 

flagpoles will have a similar pattern. 

 

 

Solution II by Cecil C. Rousseau, University of Memphis, Memphis, TN. 

Recall, the Binomial Theorem states:  

A + B( )n =
n

k

 

 
 
 

 
 AkBn −k

k =0

n

∑ =
n!

k! j!
AkB j

k, j
k + j =n

∑ . 

We can do a trinomial expansion on the Binomial Theorem:  

A + B + C( )n =
n!

i! j!k!
AiB jCk

i, j,k
i+ j+k=n

∑ . 

A geometric sequence is represented by  

1
1 − r

= 1+ r + r 2 + r 3 + ... + r n . 

Let  

G z( ) = pnzn

n≥o
∑ .   

Next, multiply the recurrence by z n  and sum over n ≥2 produces,  

G z( ) − 1 − 2z = 2z G z( ) − 1( )+ z 2G z( ) 

Then, doing a trinomial expansion results in: 
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G z( ) =
1

1− 2z − z2 =
1

1 − 2z + z2( ) =1+ 2z + z2( )+ 2z + z2( )2
+ ...+ 2z + z2( )m

= z + z + z2( )m

m≥0

∑ =
i + j + k( )!

i! j!k!i, j ,k≥0

∑ z iz jz2k

 

Collecting contributions to the coefficients of z n  completes the proof (Rousseau, 

April 2000, AMM, p.370-371). 

 
Solution III by Paul K. Stockmeyer, College of William and Mary, Williamsburg, VA. 

If we replace j  with n − i −2k  yields the summand,  

F n ,i, k( ) =
n − k( )!

i! n − i − 2 k( )!k!
 

For i ≥ 0,k ≥ 0, and n − i − 2 k ≥ 0, with F n , i, k( ) = 0  otherwise.  Then we want to show 

that p n = f n( ) for n ≥ 0, where f n( ) = F n,i,k( )
i,k

∑ , with the sum taken over all integer 

values of i and k .  Below is the mathematical computation.  

F n,i,k( ) = F n −1,i,k( )+ F n −1,i −1,k( )+ F n − 2,i,k −1( ) 

For n ≥2 and all i and k .  Summing this over all i and k  produces,  

f n( ) = f n −1( )+ f n −1( )+ f n − 2( ),  

This can be verified with f 0( ) = p 0
 and f 1( ) = p1 . (Stockmeyer, April 2000, American 

Mathematical Monthly, p.370-371) 

 

I have calculated the first 5 terms of the sequence by using the alternate explicit 

formula below. 

pn =
i + j + k( )!

i! j!k!i, j ,k≥0
i+ j +2k =n

∑
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 p0 =1

i + j + 2k = n

i + j + 2k = 0

(i, j,k)

(0,0,0)

(0 + 0 + 0)!
0!0!0!

=
1
1

=1
 

 p1 = 2

i + j + 2k = n

i + j + 2k = 1

(i, j,k)

(0,1,0) + (1,0,0)

(0 +1+ 0)!
0!1!0!

+
(1+ 0 + 0)!

1!0!0!
1

1
+

1

1
=1+1 = 2

 

 p2 = 5

i + j + 2k = n

i + j + 2k = 2

(i, j,k)

(2,0,0) + (1,1,0) + (0,2,0) + (0,0,1)

(2 + 0 + 0)!
2!0!0!

+
(1+1+ 0)!

1!1!0!
+

(0 + 2 + 0)!
0!2!0!

+
(0 + 0 +1)!

0!0!1!
2

2
+

2

1
+

2

2
+

1

1
=1+ 2 +1+1 = 5
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p3 =12

i + j + 2k = n

i + j + 2k = 3

(i, j,k)

(0,1,1) + (1,0,1) + (2,1,0) + (1,2,0) + (3,0,0) + (0,3,0)

(0 +1+1)!
0!1!1!

+
(1+ 0 +1)!

1!0!1!
+

(2 +1+ 0)!
2!1!0!

+
(1+ 2 + 0)!

1!2!0!
+

(3 + 0 + 0)!
3!0!0!

+
(0 + 3+ 0)!

0!3!0!
2 + 2 + 3 + 3 +1+1 =12  

 p4 = 29

i + j + 2k = n

i + j + 2k = 4

(i, j,k)

(0,2,1) + (2,0,1) + (1,1,1) + (0,0,2) + (1,3,0) + (3,1,0) + (4,0,0) + (0,4,0) + (2,2,0)

(0 + 2 +1)!

0!2!1!
+

(2 + 0 +1)!

2!0!1!
+

(1+1+1)!

1!1!1!
+

(0 + 0 + 2)!

0!0!2!
+

(1+ 3+ 0)!

1!3!0!
+

(3+1+ 0)!

3!1!0!

(4 + 0 + 0)!

4!0!0!
+

(0 + 4 + 0)!

0!4!0!

+
(2 + 2 + 0)!

2!2!0!
3+ 3 + 6 +1+ 4 + 4 +1+1+ 6 = 29  

 4.4:  Pell and Lucas Numbers:  Binet formulas and Pell Identities 

 In this section we consider two related versions of the Pell Numbers.  The 

first version, which gives the traditional Pell Numbers, or Pell Sequence, are defined 

by 

p0 = 0 , p1 = 1 , 

p n = 2 p n −1 + p n − 2
, n ≥2 

And the second version having the conditions of  

q0 = 1 , q1 = 1, 

q n = 2q n −1 + q n − 2
, n ≥2. 
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(Burton, 2002, p.332) 

This gives us two sequences 

0,1,2,5,12,29,70,169,408,...

1,1,3,7,41,99,239,577,...
 

If α = 1 + 2  and β = 1 − 2  we can show that the Pell numbers can be expressed as 

pn =
α n − β n

2 2
,       qn =

α n + β n

2
 

For n ≥0 (Burton, 2002, p.332). 

As we have seen, given the recurrence relation 

p n = 2 p n −1 + p n − 2
, 

 We can bring the sequence all to the left side and set it equal to zero as such,  

p n − 2 p n −1 − p n − 2 = 0 . 

From this we get the quadratic equation x 2 − 2 x − 1 = 0 .  Using the quadratic formula 

we get the roots of  

α = 1 + 2     And    β = 1 − 2 . 

Substituting α  and β  in for x we get α 2 − 2α − 1 = 0  and β 2 − 2 β − 1 = 0 .  From here we 

will set the second and third term equal to the first term of each equation giving us 

α 2 = 2α + 1  and β 2 = 2 β + 1 . 

 Next, we will multiply the corresponding equations by αn and βn  resulting in 

α n + 2 = 2α n +1 + α n  and β n + 2 = 2 β n +1 + β n .  Subtracting the second equation from the 

first and dividing by α − β  gives us 

α n +2 − βn +2

α − β
= 2

α n +1 − βn +1

α − β
 

 
 

 

 
 +

α n − βn

α − β
. 

If we set  
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H n =
α n − βn( )
α − β( )

 

We get H n + 2 = 2 H n +1 + H n
.  Notice that H1 = 1 and  

H 2 =
α 2 − β2( )
α − β( ) = α + β = 2 . 

 Therefore the sequence Hn
 is the sequence of the Pell numbers pn

,  

⇒ pn =
α n − βn( )
α − β( ) =

α n − βn( )
2 2

. 

 For the second sequence, everything will be the same as above but will yield 

⇒ qn =
α n + βn( )
α + β( ) =

α n + βn( )
2

. 

(Burton & Paulsen, 2002, p.140). 

 

 Having now established these expressions, I will derive five relations in 

regards to the Pell numbers from the two sequences given above. 

a) p 2 n = 2 p n q n  

b) p n + p n −1 = q n  

c) 2qn
2 − q2n = −1( )n

 

d) pn + pn +1 + pn + 3 = 3pn + 2  

e) qn
2 − 2 pn

2 = −1( )n
; Hence q n p n

 are the convergents of 2  

(Burton, 2002, p.332) 

 

 

a) p 2 n = 2 p n q n
. 
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Solution: 

 The closed form for the Pell numbers is as follows: 

pn =
2

4

 

 
 

 

 
 1+ 2( )n

+ −
2

4

 

 
 

 

 
 1 − 2( )n

 

This gives us the sequence of Pell numbers 

0,1,2,5,12,29,70,169 ,408,...  

And  

qn =
1
2

 
 
 
 
 
 1 + 2( )n

+ 1 − 2( )n 
  

 
   

Gives us a different sequence of Pell numbers of  

1,1,3,7,17,41,99,239 ,577,...  

Using the following relation of p 2 n = 2 p n q n
 gives us: 

2
4

 

 
 

 

 
 1+ 2( )2n

+ −
2

4

 

 
 

 

 
 1 − 2( )2n

− 2
2

4

 

 
 

 

 
 1+ 2( )n

+ −
2

4

 

 
 

 

 
 1 − 2( )n 

 
 
 

 

 
 
 

1
2

 
 
 
 
 
 1+ 2( )n

1 − 2( )n 
  

 
  

 

Factoring out a 2 gives us the next result: 

2
2

8

 

 
 

 

 
 1+ 2( )2n

+
2

8

 

 
 

 

 
 1+ 2( )n

1− 2( )n

+ −
2

8

 

 
 

 

 
 1− 2( )2n

+ −
2

8

 

 
 

 

 
 1+ 2( )n

1− 2( )n 

 
 
 

 

 
 
 

 

Next we simplify by collecting like terms: 

2
2

8

 

 
 

 

 
 1+ 2( )2n

+ −
2

8

 

 
 

 

 
 1− 2( )2n 

 
 
 

 

 
 
 

 

We then distribute the 2 back into the brackets and reduce giving the desired result: 

2

4

 

 
 

 

 
 1+ 2( )2n

+ −
2

4

 

 
 

 

 
 1− 2( )2n 

 
 
 

 

 
 
 
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b) p n + p n −1 = q n
 

Solution:  Rearranging the relationship gives us q n = p n + p n −1  

1
2

 
 
 
 
 
 1+ 2( )n

+ 1 − 2( )n 
  

 
  =

2
4

 

 
 

 

 
 1+ 2( )n

+ −
2

4

 

 
 

 

 
 1 − 2( )n 

 
 
 

 

 
 
 

+
2

4

 

 
 

 

 
 1+ 2( )n −1

+ −
2

4

 

 
 

 

 
 1 − 2( )n −1 

 
 
 

 

 
 
 

 

Next we arrange the terms to have corresponding parts: 

2

4

 

 
 

 

 
 1+ 2( )n

+
2

4

 

 
 

 

 
 1+ 2( )n −1

+ −
2

4

 

 
 

 

 
 1 − 2( )n

+ −
2

4

 

 
 

 

 
 1 − 2( )n −1 

 
 
 

 

 
 
 

 

Then we factor to obtain the following: 

2
4

 

 
 

 

 
 1+ 2( )n −1

1+ 2 +1( )[ ]+ −
2

4

 

 
 

 

 
 1 − 2( )n −1

1 − 2( )+1[ ] 

We then distribute back through the brackets to obtain the following: 

2
4

 

 
 

 

 
 2 + 2( )1+ 2( )n −1

+ −
2

4

 

 
 

 

 
 2 − 2( )1 − 2( )n −1

 

Then distribute, collect like terms and simplify: 

1+ 2
2

 

 
 

 

 
 1+ 2( )n −1

+
1 − 2

2

 

 
 

 

 
 1 − 2( )n −1

 

Then we factor out 
1
2

 and simplify getting the desired result: 

1
2

 
 
 
 
 
 1+ 2( )1+ 2( )n −1

+ 1 − 2( )1 − 2( )n −1 
  

 
  

1
2

 
 
 
 
 
 1+ 2( )n

+ 1 − 2( )n 
  

 
  
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c) 2qn
2 − q2n = −1( )n

 

Solution:  Rearranging the relationship gives us −1( )n = 2qn
2 − q2n  

−1( )n = 2
1

2

 
 
 
 
 
 1+ 2( )n

+ 1 − 2( )n 
  

 
  

 
  

 
  

1

2

 
 
 
 
 
 1+ 2( )n

+ 1 − 2( )n 
  

 
  

 
  

 
  

−
1

2

 
 
 
 
 
 1+ 2( )2n

+ 1 − 2( )2n 
  

 
  

 
  

 
   

Next we will distribute through and collect like terms: 

1

2

 
 
 
 
 
 1+ 2( )2n

+ 1+ 2( )n

1 − 2( )n

+
1

2

 
 
 
 
 
 1 − 2( )2n 

  
 
  

−
1

2

 
 
 
 
 
 1+ 2( )2n

+ 1 − 2( )2n 
  

 
  

 
  

 
   

Then we distribute through 
1
2  and eliminate some brackets: 

1

2

 
 
 
 
 
 1+ 2( )2n

+ 1+ 2( )n

1 − 2( )n

+
1

2

 
 
 
 
 
 1 − 2( )2n

−
1

2

 
 
 
 
 
 1+ 2( )2n

−
1

2

 
 
 
 
 
 1 − 2( )2n 

  
 
   

Next we collect like terms and reduce: 

1+ 2( )n

1 − 2( )n 
 
  

 
 → 1+ 2( )1 − 2( )( )n

 

Finally we distribute the two binomials and obtain the desired result: 

−1( )n

 

 

d) pn + pn −1 + pn − 3 = 3pn − 2  

 Solution: We begin with the recurrence: 

pn = 2 pn −1 + pn −2 → pn − 2 pn −1 − pn −2 = 0

pn +3 = 2pn +2 + pn +1← equation1

pn +2 = 2pn +1 + pn → pn +1 + pn = pn +2 ← equation2

 

Adding equation 1 to equation 2 results in: 

pn + 2 pn +1 + pn + 3 = 3 pn + 2 + pn +1 

Adding −pn +1 to both sides results in: 
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pn + pn +1 + pn + 3 = 3pn + 2  

 

e) qn
2 − 2 pn

2 = −1( )n
 

Solution:  Note from earlier that: 

pn =
α n − βn

2 2
 And qn =

α n + βn

2
 

Where  

α =1+ 2,β =1− 2  

(Burton, 2002, p.332) 

With the identity qn
2 − 2 pn

2 = −1( )n

 given to us above, qn
2
 equals the following: 

qn
2 =

α n + βn( )2

22 =
α 2n + 2α nβn + β2n

4  

Next pn
2  equals the following: 

pn
2 =

α n − βn( )2

2 2( )2 =
α 2n − 2α n βn + β2n

8
 

Then we take the difference of each above multiply pn
2  by two: 

qn
2 − 2pn

2 =
α 2n + 2α nβn + β2n

4
− 2

α 2n − 2α nβn + β2n

8

 

 
 

 

 
 =

4α nβn

4
 

Then,  

4α n βn 4
4

= α n βn = αβ( )n
 

Which will then give us the desired result: 

1+ 2( )1 − 2( )[ ]= 1+ 2 − 2 − 2( )n

= −1( )n
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Chapter 5:  Curriculum for Instructors and Students
 

5.1:  About the Curriculum 

The curriculum component of my M.S.T. was done in my period 6, first 

semester school year 2010-2011 Algebra II class.   The class has about 25 students 

and it has all high school students.  It had one 9th grader, 2 seniors, a few 11th 

graders with predominately 10th graders.  I have taught at my school Arts and 

Communication Magnet Academy (A.C.M.A.) for 8 years.  A.C.M.A. is a grade 6 

through 12 public arts magnet school in the Beaverton, Oregon school district.  

Many of the students in this Algebra class I have known since 6th grade, so we are 

very familiar with each other.  These lessons were done during the month of January 

2011 over about 4 weeks.  We met about 10 class periods during this time.  Five 

lessons were used with the students:  Introduction to Recurrence Relations, 

Characteristic Polynomial, Guess and Check with Induction parts 1 and 2, Pell 

Sequence, Tower of Hanoi.  The Back Substitution lesson and Flagpoles lesson were 

not done with the class due to time constraints.  They were tested and simulated 

with myself.  In the appendix below you will see each lesson categorized by:  Lesson 

Plan, Student Handout, Instructor Handout with solutions, and reflection for each 

lesson. 
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5.2:  Introduction to Recurrence Relations 

5.2.1:  Lesson Plan 

Lesson 1:  Introduction to Recurrence Relations 

 

Grade level:  

 

 High School (9-12) 

Subject:   

 

Advanced Algebra 

II 

 

Unit Title:   

 

Techniques for 

creating explicit 

formulas from 

recurrence 

relations 

Unit topic:   

 

Discrete Math-

Recurrence 

Relations 

Lesson#  

 

One 

 

Lesson Title:  

 

Introduction to 

recurrence 

relations 

 

 

Materials: 

 

Handout 

 

Advanced Algebra 

II textbook 

 

Graphing 

calculator 

Overview and 

purpose:   

 

Prerequisite 

material and an 

introduction to 

recurrence 

relations 

 

 

Objectives:  

 

     The purpose of this lesson is to introduce students to recurrence relations.  This 

lesson is a prerequisite so students can be prepared for more complex lessons to 

come. 

 

Information:  

 

     Through modeling, an investigative handout, as well as their textbook, students 

will become familiar with various definitions in recursion, arithmetic and geometric 

sequences, non-geometric and non-arithmetic sequences, writing recursive 

formulas, writing terms in a sequence from a recursive formula, shifted geometric 

sequences and applications. 

 

     In order for students to have an easier transition to the harder material to follow, 

it is important that the class cover a chapter or unit on recursion.  Usually a high 

school Advanced Algebra II, Precalculus, or Discrete Math textbook will suffice.  

Topics that should be covered but are not limited to are arithmetic and geometric 

sequences:  their graphs and applications, shifted geometric sequences (concept of a 

limit), non-arithmetic and non-geometric sequences, writing recursive formulas, 

and writing terms in a sequence from a recursive formula. 
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Verification:   

 

     Students will check each other for understanding during the class period by 

having their peers present their findings in front of the classroom.  They will teach 

each other.  Teacher will also check for understanding by prompting and promoting 

discussion and with open-ended questioning.  Either at the end of the lesson or the 

following class period the teacher will collect student work and grade and give 

appropriate feedback.  The following class period the class should review the 

previous days lesson to ensure comprehension and understanding before moving 

on to the next lesson. 

 

Activity:   

 

     With the handout provided and a standard high school textbook with a chapter 

on recursion, students will go through the handout in a tutorial investigative like 

approach to complete and comprehend the material. 

 

Summary:   

 

     At the end of this lesson and unit, students will have a good foundation of 

recursion.  They will be able to understand more complex topics within recursion. 

More specifically, they will need to convert recurrence relations to an explicit 

formula by using four techniques:  guess and check with induction, characteristic 

polynomial, generating functions, and linear algebra. 
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5.2.2:  Student Handout 

Name_________________________ 

        Period__________ 

 

Lesson 1:  Introduction to Recurrence Relations 

 

Give definitions for the following words below as well as an example. 

 

1) Recursion 

 

 

 

2) Sequence 

 

 

 

3) Term 

 

 

 

4) General term (Murdock, Kamischkie, & Kamischkie, 2004, p.29) 

 

 

 

5) Recurrence relation (recursive formula) 

 

 

 

6) Initial condition(s) 

 

 

 

7) What is an arithmetic sequence?  Give the symbolic form and what each part 

means. 

 

 

 

 

8) What is a geometric sequence?  Give the symbolic form and what each part 

means. 
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9) What is the symbolic form of a shifted geometric sequence?  What is the long-run 

value? (Murdock et. al., 2004) 

 

10) Write a recursive formula to generate each sequence.  Use u1
 for the first term.  

Then find the next 3 terms in the sequence. 

 

a) 3, 7, 11, 15, … 

 

    

b) 15, 5, −5, −15, … 

 

  

c)  .3, .03, .003, .0003, … 

 

 

d) 100, 150, 225, 337.5, …  

 

 

 

11) List the first five terms of the sequence. 

 

a) u1 = − 4  

 u n = u n −1 − 1.5  Where n ≥2 

 

 

 

b) u1 = 1  

 u n = 3u n −1 − 2  Where n ≥2 

 

 

 

c) u 0 = 256  
 u n = 0 .75 u n −1  , n ≥1 

 

 

12) Application:  A nursery owns 7000 Japanese maple trees.  Each year the nursery 

plans to sell 12% of it’s trees and plant 600 new ones (Murdock et al., 2004, p.49). 

 

a) Write a recursive definition that represents the nursery’s tree stock. 

 

 

 

b) Find the number of pine trees owned by the nursery after 10 years. 
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c) At what point will the amount of trees planted equal the amount of trees sold by 

the nursery? 

 

13) Here are some recurrence relations that are neither arithmetic nor geometric.  

List the first 6 terms of each sequence.  Instead of un
 use an

. 

 

a) a1 =
3
2

 

 a n = 5 a n −1 − 1  For n ≥2 

 

 

 

b) a 0 = − 3 , a1 = −2   

 

a n = 5 a n −1 − 6 a n − 2
 For n ≥2 

 

 

 

 

c) a1 = 10 , a 2 = 29  

 

a n +1 = 7 a n − 10 a n − 1
 For n ≥2 

 

 

 

 

14) Write a recurrence relation for the following sequences.  Use a1
 for the first term 

in the sequence. 

 

 

a) 1,1,2,3,5,8,13, … 

 

 

 

b) 1,4,9,16, … 

 

 

 

c)  1,2,6,24,... 

 

 

 

d) 4,1,3, -2,5, -7,12, -19,31, … 
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5.2.3:  Instructor Solutions 

 

Name_________________________ 

        Period__________ 

 

Lesson 1:  Introduction to Recurrence Relations 

 

Give definitions for the following words below as well as an example. 

 

1) Recursion:  A process in which the current step relies on the previous step(s). 

 

 

2) Sequence:  An ordered set of numbers. 

 

 

3) Term:  A number in a sequence. 

 

 

4) General term:  a generic term in a sequence usually denoted by un
 or some 

other variable (Murdock, 2004, p.29). 

 

 

5) Recurrence relation (recursive formula):  An equation that defines one 

member of the sequence in terms of a previous one. 

 

 

6) Initial condition(s):  Starting term(s) in a recurrence relation. 

 

 

 

7) What is an arithmetic sequence?  Give the symbolic form and what each part 

means. 

 

A sequence of numbers where each term is determined by adding the same 

fixed number to the previous one. 

 

u n = u n −1 + d  , un
 Is the current term, un −1

 is the previous term and d  is the 

common difference (Murdock, 2004, p.31). 

 

 

8) What is a geometric sequence?  Give the symbolic form and what each part 

means. 

A sequence in which a constant r  can be multiplied by each term to get 

the next term 
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u n = ru n −1
 , un

 Is the current term, un −1
 is the previous term and r  is the 

common ratio (Murdock, 2004, p.33). 

 

9) What is the symbolic form of a shifted geometric sequence?  What is the long-run 

value? 

 
u n = ru n −1 + d   

 

The long-run value is the limit of the sequence (Murdock, 2004, p.33, 47). 

 

 

10) Write a recursive formula to generate each sequence.  Use u1
 for the first term.  

Then find the next 3 terms in the sequence. 

 

a) 3, 7, 11, 15, …… 

 

u n = u n −1 + 4  Where u1 = 3  and n ≥2 

 

The next 3 terms are 19,23,27 

 

    

b) 15, 5, −5, −15,.. 

 

u n = u n −1 − 10  Where u1 = 15  and n ≥2 

 

The next 3 terms are -25, -35, and -45 

 

  

c) .3, .03, .003, .0003,.. 

 

u n = (. 1) u n −1
 Where u1 = .3 and n ≥2 

 

The next 3 terms in the sequence are .00003, .000003, and .0000003 

 

 

 

d) 100, 150, 225, 337.5, ……  

 

un = (
3
2

)un −1 Where u1 = 100  and n ≥2 

 

The next 3 terms in the sequence are 537.25,759.375,1139.0625 
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11) List the first five terms of each sequence 

 

a) u1 = − 4  

 u n = u n −1 − 1.5  Where n ≥2 

 

−5.5, −7, −8.5, −10, −11.5  

 

b) u1 = 1  

 u n = 3u n −1 − 2  Where n ≥2 

 

1,1,1,1,1 

 

 

c) u 0 = 256  

 u n = 0 .75 u n −1  
 

192,144 ,108,81,60,75  

 

 

12) Application:  A nursery owns 7000 Japanese maple trees.  Each year the nursery 

plans to sell 12% of it’s trees and plant 600 new ones (Murdock et al., 2004, p.49). 

 

a) Write a recursive definition that represents the nursery’s tree stock. 

 

a n = (. 88 ) a n −1 + 600  Where a1 = 7,000  and n ≥2 

 

 

b) Find the number of pine trees owned by the nursery after 10 years. 

 

5,557 trees  

 

c) At what point will the amount of trees planted equal the amount of trees sold by 

the nursery? At 5000 trees the amount sold will be equal to amount planted.   

 

 

13) Here are some recurrence relations that are neither arithmetic nor geometric.  

List the first 6 terms of each sequence.  Instead of un
 use an

. 

 

a) a1 =
3
2

 

 a n = 5 a n −1 − 1  For n ≥2 

a2 =
13
2

,a3 =
63
2

,a4 =
313
2

,a5 =
1563

2
,a6 =

7813
2
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b) a 0 = − 3 , a1 = −2   

 

a n = 5 a n −1 − 6 a n − 2
 For n ≥2 

 
a2 = 8,a3 = 52,a4 = 212,a5 = 748,a6 = 2,468  

 

 

c) a1 = 10 , a 2 = 29  

 

a n +1 = 7 a n − 10 a n − 1
 For n ≥2 

 
a3 = 103,a4 = 431,a5 = 1,987,a6 = 9,599  
 

 

 

14) Write a recurrence relation for the following sequences.  Use a1
 or a0

 for the first 

term in the sequence 

 

 

a)1,1,2,3,5,8,13,.. 

 

a n = a n −1 + a n − 2
 Where n ≥2 and a 0 = 1, a1 = 2  

 

 

b) 1,4,9,16,.. 

 

a n = n 2  Where n ≥1 and a1 = 1  
 

 

c)  1,2,6,24, …… 

 

a n = n!  Where n ≥1 and a1 = 1  

 

 

d) 4,1,3, -2,5, -7,12, -19,31, …… 

 

Where n ≥2 and a 0 = 4 , a1 = 1  
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5.2.4:  Lesson Reflection 

 

Lesson 1:  Introduction to Recurrence Relations 

 Lesson 1 was done shortly after completing Chapter 1 in our Advanced 

Algebra II textbook.  In chapter 1 students had been introduced and became familiar 

with arithmetic sequences, geometric sequences, shifted geometric sequences, the 

basic concept of a limit, and recursion notation (Murdock et al., 2004).  This lesson 

was a good starting point for my students.  It was designed somewhat like a tutorial 

where in conjunction with the handout students would go through chapter 1 and 

answer the questions on the handout.  In conjunction with chapter 1 in the textbook, 

lesson 1 was the last time at review or for prerequisites before all the material to 

come after would be all new. 

 This lesson went well overall with most of the students.  In the definitions 

with examples section some of the things I noticed with the students are that some 

only gave a definition but did not give an example and there were some students 

who did not define what a long run value is.  In the second part where they had to 

write a recursive definition from geometric and arithmetic sequences when it comes 

to a ratio some students would write a decimal ratio and some would write a 

fraction ratio.  I constantly struggle with students about the difference between 

fractions and decimals.  I always promote fractions and teach and show the kids the 

difference between an exact answer and an approximation.  A fraction answer will 

be exact whereas a decimal will be an approximation if it is an irrational number.  

Students will convert fractions many times to decimals because of their overreliance 
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on calculators as well as not feeling confident in the operations of fractions.  A good 

example of this might be the difference between writing a geometric sequence like 

this an =
1
3

an −1 or a n = .333 3( )a n −1
 which the latter of the two will not produce an 

exact answer.  Some other interesting notes include 14a) only a few students 

initially picked up on how to write the recurrence relation of the Fibonacci 

sequence.  In 14c) all of the students did not pick up on the fact that this can be 

represented as a factorial.  I also had to go over factorials because most if not all had 

either never done factorials or did not remember doing them any time in the past in 

math.  This lesson was done during one period and then whatever they did not 

finish was homework and we went over any questions at the beginning of the next 

period. 

 

 

 

 

 

 

 

 

 

 

 

5.3:  Characteristic Polynomial 
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5.3.1:  Lesson Plan 

Lesson 2:  Characteristic Polynomial 

Grade level:  

 

 High School (9-12) 

Subject:   

 

Advanced Algebra 

II 

 

Unit Title:   

 

Techniques for 

creating explicit 

formulas from 

recurrence 

relations 

Unit topic:   

 

Discrete Math-

Recurrence 

Relations 

Lesson#  

 

Two 

 

Lesson Title:  

 

Characteristic 

Polynomial 

 

Materials: 

 

Handout 

 

Graphing 

calculator 

 

 

Overview and 

purpose:   

 

Create an explicit 

formula using the 

Characteristic 

Polynomial 

 

Objectives:  

 

     The purpose of this lesson is for students to use the technique of the 

characteristic polynomial to create explicit formulas from recurrence relations. 

 

Information: 

 

     Students will be given a handout with an example on how to do the characteristic 

polynomial.  The teacher should also model the example on the handout or another 

example.  Students should have a good foundation in quadratic functions in order to 

be successful with the characteristic polynomial.  Students should be familiar with 

factoring, roots, the quadratic formula, exponents, substitution and elimination. 

 

     As well as being familiar with the characteristic polynomial students should also 

understand conceptually that the drawback to recurrence relations is that each term 

in the sequence is dependent upon the previous term.  By creating an explicit 

formula the students are able to find any nth term in a non-arithmetic or non-

geometric sequence. 

 

Verification:   

 

     Students will check each other for understanding during the class period by 

having their peers present their findings in front of the classroom.  They will teach 

each other.  Teacher will also check for understanding by prompting and promoting 

discussion and with open-ended questioning.  Either at the end of the lesson or the 
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following class period the teacher will collect student work and grade and give 

appropriate feedback.  The following class period the class should review the 

previous days lesson to ensure comprehension and understanding before moving 

on to the next lesson. 

 

Activity:   

 

     With the handout provided students will go through the handout in a tutorial 

investigative like approach to complete and comprehend the material.  Students 

should check their explicit formula by checking the initial conditions as well as the 

next few terms. 

 

Summary:   

 

     At the end of this unit and lesson students will have a good understanding of the 

characteristic polynomial.  It is also important that students realize conceptually the 

difference between a recurrence relation and an explicit formula 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2:  Student Handout 
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Name_________________________________ 

       Period____________ 

 

Lesson 2:  Characteristic Polynomial:  A technique for converting recurrence 

relations to an explicit (closed-form) formula. 

 

The characteristic polynomial is a technique used for solving recursively-

defined sequences.  Recurrence relations are useful when trying to find patterns in 

number sequences.  Remember though, a drawback when using recurrence 

relations has been given in the example of, “What if I want to find the 100th term in 

the sequence?”  In order to do that you need to know the 99th term, which means 

you have to do recursion 99 times.   

 

The characteristic polynomial is the first technique you will learn to find 

what is called a “closed form-formula”, or also known as “explicit formula”, for a 

recurrence relation.  A “solution” of the recurrence relations is another way of 

stating the formula.  Creating this will allow you to easily find the 100th term of the 

sequence as well as any other term in the sequence. 

 

Example:  Solve the recurrence relation a n = 5 a n −1 − 6 a n − 2
, a 0 = − 3 , a1 = −2  an n ≥2 

(Goodaire & Parmenter, 2006, p.181). 

 

You can think of the recurrence relation in terms of a quadratic expression of the 

form ax 2 + bx + c  where a, b , and c  are constants (numbers).  In other words an
 is 

the ax 2  term, 5 a n −1
 is the bx term and 6 a n −1

 is the c  term. 

 
an = 5an −1 − 6an − 2  

−5 a n −1 + 6 a n − 2
          −5 a n −1 + 6 a n − 2

 (Subtract from both sides.)  

 

a n − 5 a n −1 + 6 a n − 2 = 0  (Which converts to) x 2 − 5 x + 6  

 

x − 2( ) x − 3( ) = 0  (Which gives us roots of) x1 = 2  and x 2 = 3  
 

(We can next substitute our roots into the equation below) 

 

a n = c1 x1
n( )+ c 2 x 2

n( )  
(Goodaire & Parmenter, 2006, p.171).

 

 

a n = c 1 ( 2 n ) + c 2 ( 3 n )  

 

With the first initial condition of a 0 = − 3  we can substitute 0 for n. 

 

a n = c 1 ( 2 n ) + c 2 ( 3 n )  (Becomes) a 0 = c 1 ( 2 0 ) + c 2 ( 3 0 )  (Which then becomes) − 3 = c 1 + c 2
 

(Remember, anything to the zero power is one.) 
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The second initial condition is a1 = −2  and we can substitute 1 for n. 

 

a n = c 1 ( 2 n ) + c 2 ( 3 n )  (Becomes) a 1 = c 1 ( 2 1 ) + c 2 ( 3 1 )  (Which then becomes) − 2 = 2c1 + 3c 2
 

 

 

(We now have two equations with two variables.) 

 
− 3 = c 1 + c 2

 

− 2 = 2c1 + 3c 2
 

 

(Solve using elimination or substitution.) 

 

c1 = −7  And c 2 = 4  

 

(Substituting) c1 = −7  and c 2 = 4  (into) a n = c 1 ( 2 n ) + c 2 ( 3 n )  (yields) 

 

a n = − 7 ( 2 n ) + 4 ( 3 n )  (This is the closed-form/explicit formula, or our solution to the 

recurrence relation.) 

 

If you test the formula you will see a 0 = − 3 , a1 = −2  and the 100th term is 

2061510083000000000000000000000000000000000000000000000000! 

 

 

Exercises:  For each recurrence relation find the explicit formula.  After you create 

your formula make sure and test the initial conditions to see if it works. 

 

1) a n = 4 an −1
 Given a0 = 1, a1 = 4  where n ≥2  

 

 

 

 

 

 

 

 

 

 

 

 

2) a n = − 2 a n −1 + 15 a n − 2
 Given a0 = 1, a1 = 1  where n ≥2 (Goodaire & Parmenter, 2006, 

p.174).  
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3) a n = − 6 a n −1 + 7 a n − 2
 Given a 0 = 32 , a1 = − 17  (Goodaire & Parmenter, 2006, p.174). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) a n = − 8 a n −1 − a n − 2
 Given a0 = 0  and a1 = 1  (Goodaire & Parmenter, 2006, p.174). 
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5) a n +1 = 7 a n − 10 a n − 1
 Given a1 = 10  and a2 = 29  (Goodaire & Parmenter, 2006, p.174). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.3:  Instructor Solutions 

Name_________________________________ 
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       Period____________ 

 

Lesson 2:  Characteristic Polynomial:  A technique for converting recurrence 

relations to a closed-form formula. 

 

The characteristic polynomial is a technique used for solving recursively-

defined sequences.  Recurrence relations are useful when trying to find patterns in 

number sequences.  Remember though, a drawback when using recurrence 

relations has been given in the example of, “What if I want to find the 100th term in 

the sequence?”  In order to do that you need to know the 99th term, which means 

you have to do recursion 99 times.   

 

The characteristic polynomial is the first technique you will learn to find 

what is called a “closed-form formula” or an “explicit formula” for a recurrence 

relation.  Creating this will allow you to easily find the 100th term of the sequence as 

well as any other term in the sequence. 

 

Example:  Solve the recurrence relation a n = 5 a n −1 − 6 a n − 2
, a 0 = − 3 , a1 = −2  an n ≥2 

(Goodaire & Parmenter, 2006, p.181). 

 

You can think of the recurrence relation in terms of a quadratic expression of the 

form ax 2 + bx + c  where a, b and c are constants (numbers).  In other words an
 is the 

ax 2  term, 5 a n −1
 is the bx term and 6 a n −1

 is the c  term. 

 
an = 5an −1 − 6an − 2  

−5 a n −1 + 6 a n − 2
          −5 a n −1 + 6 a n − 2

 (Subtract from both sides).  

 

a n − 5 a n −1 + 6 a n − 2 = 0  (Which converts to) x 2 − 5 x + 6 = 0 . 

 

x − 2( ) x − 3( ) = 0  (Which gives us roots of) x1 = 2  and x 2 = 3  

 

(Next, we put these roots into the equation) a n = c 1 ( x1
n ) + c 2 ( x 2

n )  (Goodaire & 

Parmenter, 2006, p.171). 
an = c1 2 n( )+ c 2 3n( ). 

 

With the first initial condition of a 0 = − 3  we can substitute 0 for n. 

 

a n = c 1 ( 2 n ) + c 2 ( 3 n )  (Becomes) a 0 = c 1 ( 2 0 ) + c 2 ( 3 0 )  (Which then becomes) − 3 = c 1 + c 2
 

(Remember anything to the zero power is one.) 

 

The second initial condition is a1 = −2 .  We can substitute 1 for n. 

a n = c 1 ( 2 n ) + c 2 ( 3 n )  (Becomes) a 1 = c 1 ( 2 1 ) + c 2 ( 3 1 )  (Which then becomes) − 2 = 2c1 + 3c 2
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(We now have two equations with two variables). 

 
− 3 = c 1 + c 2

 

− 2 = 2c1 + 3c 2
 

 

(Solve using elimination or substitution we get). 

 

c1 = −7  And c 2 = 4  

 

(Substituting) c1 = −7  and c 2 = 4  (into) a n = c 1 ( 2 n ) + c 2 ( 3 n )  (yields) 

 

a n = − 7 ( 2 n ) + 4 ( 3 n )  (Which is the closed-form formula or our solution). 

 

If you test the formula you will see a 0 = − 3 , a1 = −2  and the 100th term is 

2061510083000000000000000000000000000000000000000000000000! 

 

 

 

Exercises:  For each recurrence relation find the closed-form formula.  After you 

create your formula make sure and test the initial conditions to see if it works. 

 

1) a n = 4 an −1
 Given a0 = 1, a1 = 4  where n ≥2 

 

Solution: 

 
an − 4an −1 = 0

x2 − 4x = 0

x(x − 4) = 0

x1 = 0,x2 = 4

an = c1(x1
n) + c2(x2

n )

a0 =1,a1 = 4

a0 = c1(0
0) + c2(40)

1 = c2

∴an = 4n,n ≥ 0

 

 

 

 

2) a n = − 2 a n −1 + 15 a n − 2
 Given a0 = 1, a1 = 1  where n ≥2 (Goodaire & Parmenter, 2006, 

p.174). 

 

Solution: 
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an + 2an −1 −15an −2 = 0

x 2 + 2x −15 = 0

(x + 5)(x − 3) = 0

x1 = −5,x2 = 3

an = c1(x1
n ) + c2(x2

n )

a0 →1 = c1(−50) + c2(30)

a1 →−1 = c1(−51) + c2(31)

1 = c1 + c2

−1 = −5c1 + 3c2

c1 =
1

2
,c2 =

1

2

an = 1
2

(−5n ) + 1
2

(3n ) →

∴an =
1

2
−5n( )+ 3n( )[ ],n ≥ 0

 

 

 

 

3) a n = − 6 a n −1 + 7 a n − 2
 Given a 0 = 32 , a1 = − 17  (Goodaire & Parmenter, 2006, p.174). 

 

 
an + 6an −1 − 7an −2 = 0

x 2 + 6x − 7 = 0

(x + 7)(x −1) = 0

x1 = −7,x2 =1

an = c1(x1
n ) + c2(x2

n )

a0 →32 = c1(−70) + c2(10)

a1 →−17 = c1(−71) + c2(11)

32 = c1 + c2

−17 = −7c1 + c2

c1 =
49
8

c2 =
207
8

∴an =
49
8

(−7n ) +
207
8

,n ≥ 0
 

4) a n = − 8 a n −1 − a n − 2
 Given a0 = 0  and a1 = 1  (Goodaire & Parmenter, 2006, p.174). 

 

Solution:  
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an + 8an −1 + an −2 = 0

x 2 + 8x +1 = 0

x =
−b ± b2 − 4ac

2a

x =
−8 ± (−8)2 − 4(1)(1)

2(1)

x = (−4 ± 15)

x1 = (−4 + 15), x2 = (−4 − 15)

an = c1(x1
n ) + c2(x2

n )

a0 →0 = c1((−4 + 15)0) + c2((−4 − 15)0)

a1 →1 = c1((−4 + 15)1) + c2((−4 − 15)1)

0 = c1 + c2

1 = c1(−4 + 15) + c2(−4 − 15)

c1 =
15

30
c2 = −

15

30

an =
15
30

(−4 + 15)n −
15
30

(−4 − 15)n →

∴an =
15

30
−4 + 15( )n

− −4 − 15( )n 
  

 
  ,n ≥ 0
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5) a n +1 = 7 a n − 10 a n − 1
 Given a1 = 10  and a2 = 29  (Goodaire & Parmenter, 2006, p.174). 

 

Solution: 
an +1 = 7an −10an −1

an +1 − 7an +10an −1 = 0

x2 − 7x +10 = 0

x − 5( ) x − 2( ) = 0

x1 = 5, x2 = 2

an = c1 x1( )n
+ c2 x2( )n

a1 →10 = c1 5( )1 + c2 2( )1

a2 →29 = c1 5( )2+c2 2( )1

10 = 5c1 + 2c2

29 = 25c1 + 4c2

c1 =
3

5
,c2 =

21

6

∴an =
3
5

5( )n +
21
6

2( )n
,n ≥1
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5.3.4:  Lesson Reflection 

Lesson 2:  The Characteristic Polynomial 

In lesson 2 I had to do a lot more teaching or modeling than in lesson 1 since 

understandably they had not seen the characteristic polynomial before.  Over the 

last few weeks we as a class have talked about the difference between a closed form 

and an explicit formula versus a recurrence relation.  The recurrence relation being 

an equation in which the current term is defined or found from the previous 

term(s); Whereas the explicit formula will help find an nth term regardless of the 

previous term(s).  The students where very excited and curious to learn a technique 

that would help them find an explicit formula. 

 I had to begin by going over the example that I gave on the handout.  What 

helped many of the students was how the characteristic polynomial can be thought 

of in terms of a quadratic expression.  Earlier in the semester we had done a whole 

unit on quadratics and were familiar with factoring a trinomial into a product of two 

binomials, solving for the roots, using the quadratic equation when it is not 

factorable, substitution, and elimination.  Some students did have some questions in 

relation to algebra.  Some items that did take some extra explanation included 

equating a recurrence relation to a quadratic expression symbolically.  Another area 

where some students had confusion was with the concept of the general solution.  

This was mainly due to notation.  For example if we have a n = c 1 ( 2 n ) + c 2 ( 3 n )  

With the first initial condition of a 0 = − 3  we can substitute 0 for n 

a n = c 1 ( 2 n ) + c 2 ( 3 n )  (Becomes) a 0 = c 1 ( 2 0 ) + c 2 ( 3 0 )  (Which then becomes) − 3 = c 1 + c 2 .  
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Some of the problems include, instead of putting the term “a sub-zero” where 

“a sub-zero” is, some students put 0 in that spot.  Also, some students still struggle 

with that anything to the power of zero is one, some initially think it is zero.  After 

teaching the example I had the students start with problem 1 which was short and 

simple. Some students’ were confused with how to factor problem 1 since there is 

no c term and some were confused how the first c term would go to zero when the 

first x term equals zero.  A few of my advanced students did all of 1-5 whereas other 

students had varying degrees of success.  A couple of students almost solved 

problem 4.  One student in particular wanted to know the solution before she went 

home because she wanted to try the problem again with the help of her dad who is a 

good tutor in math.  This lesson took two periods with some going over again during 

the second period. 

 

 

 

 

 

 

 

 

 

 

 

 



 89 

5.4:  Guess and Check with the Principle of Mathematical Induction 
 

5.4.1:  Lesson Plan 

Part 1:  Checking the Explicit Formula 

Lesson 3:  Guess and Check with the Principle of Mathematical Induction 

 

Grade level:  

 

 High School (9-12) 

Subject:   

 

Advanced Algebra 

II 

 

Unit Title:   

 

Techniques for 

creating explicit 

formulas from 

recurrence 

relations 

Unit topic:   

 

Discrete Math-

Recurrence 

Relations 

Lesson#  

 

Three-parts 1 and 

2 

 

Lesson Title:  

 

Guess and Check-

part 1 

Principle of 

Mathematical 

Induction-part 2 

Materials: 

 

Handout 

 

Graphing 

calculator 

 

 

Overview and 

purpose:   

 

Check the explicit 

formula from the 

characteristic 

polynomial 

algebraically.  Use 

induction to check 

if the explicit 

formula will work 

for all n ≥0 

 

Objectives:  

 

     The objectives in this lesson are twofold.  First students will be able to check their 

explicit formula obtained using the characteristic polynomial by substituting it in to 

the recurrence relation.  Second, students will learn the technique of guess and 

check with induction to ensure their explicit formula works for all n ≥0 

 

Information: 

 

     Part 1:  An example is shown on how to check an explicit formula using the 

recurrence relation.  The teacher may go over this example again or a different one.  

Students will take their explicit formula and substitute it back into the recurrence 

relation.  If the explicit formula is correct and the algebra was done correctly then 

both sides of the equation will equal zero. 

 

     Part 2:  An example is shown on how to use the principle of mathematical 

induction to ensure that the explicit formula works for all n ≥0. 
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     In both parts of the lesson students will work through the handout in the context 

of an investigative tutorial.  Conceptually, students should understand that just 

because you have an explicit formula does not mean that it will work for every nth 

term.  The principle of mathematical induction will prove that your explicit formula 

works for all n ≥0. 

Verification:   

 

     Students will check each other for understanding during the class period by 

having their peers present their findings in front of the classroom.  They will teach 

each other.  Teacher will also check for understanding by prompting and promoting 

discussion and with open-ended questioning.  Either at the end of the lesson or the 

following class period the teacher will collect student work and grade and give 

appropriate feedback.  The following class period the class should review the 

previous days lesson to ensure comprehension and understanding before moving 

on to the next lesson. 

 

Activity:   

 

     With the handout provided students will go through the handout in a tutorial 

investigative like approach to complete and comprehend the material.   In part 1, 

students should check to see if their explicit formula they obtained from lesson 2 is 

correct by substituting it back into the recurrence relation and obtaining a result of 

zero on both sides of the recurrence relation.  In part two, students will use the 

principle of mathematical induction to ensure that their formula will work for all 
n ≥0. 

 

Summary:   

 

     At the end of this lesson, students will have a good understanding of checking the 

explicit formula for accuracy as well as the technique of the principle of 

mathematical induction.  Students should also understand the connection between 

recurrence relations, the explicit formula and induction. 
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5.4.2:  Student Handout 

Name_________________________________ 

       Period____________ 

 

Lesson 3: Part 1- Checking the Explicit Formula:   

 

  In lesson 2 we used the characteristic polynomial to find an explicit formulas 

for recurrence relations.  We will now check the explicit formulas with the 

recurrence relations to see if it will work for any of the natural numbers from 1, ∞[ ) . 

 

Example:  (Checking the Explicit Formula):  We have already found from example 

1 lesson 2 that the explicit formula for a n = 5 a n −1 − 6 a n − 2
 where a 0 = − 3 , a1 = − 2,  n ≥2, 

(Goodaire & Parmenter, 2006, p.174), is an = −7 2 n( )+ 4 3n( ). 

 

This first example is a check to see if the explicit formula will actually work as 

defined from the recurrence relation. 

 

(First, substitute)  

 

an = −7 2 n( )+ 4 3n( ) (into the recurrence relation below)  

 
a n = 5 a n −1 − 6 a n − 2  
 

−7 2n( )+ 4 3n( )= 5an −1 − 6an − 2  
 

 (Below, are the corresponding recurrence relations.) 

 

an = −7 2n( )+ 4 3n( )
an −1 = −7 2n −1( )+ 4 3n −1( )
an −2 = −7 2n −2( )+ 4 3n−2( )

 

    

(Next, substitute the corresponding recurrence relations into the original.)  

 

 

(Then, we can get the equation all on the left side.) 

 

 

(Distribute through the brackets to obtain.) 
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− 7 (2 n ) + 4 ( 3 n ) + 35 (2 n − 1 ) − 20 ( 3 n − 1 ) − 42 (2 n − 2 ) + 24 ( 3 n − 2 ) = 0  
(Next, collect like terms.) 

 

−7(2 n ) + 35(2 n −1) − 42(2 n − 2 )[ ]+ 4(3n ) − 20(3n −1) + 24 (3n − 2 )[ ]= 0  

 

(Factor) 

 

2 n − 2 −7(2 2 ) + 35(21) − 42(2 0 )[ ]+ 3n − 2 4(32 ) − 20(31) + 24 (30 )[ ]= 0  

 

(Using order of operations you will notice that each bracket simplifies to zero.) 

 
2 n − 2 0[ ] + 3 n − 2 0[ ] = 0  
 

 Check!  This verifies that the explicit formula is valid! 

 

 

Exercises:  For #1-5, check each explicit formula by substituting it into the 

recurrence relation. 

 

1) Recurrence relation a n = 4 an −1
 given a0 = 1, a1 = 4 , where  

Explicit formula:  a n = 4 n  For n ≥0 
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 2) a n = − 2 a n −1 + 15 a n − 2
 Given a 0 = 1, a1 = 1  where n ≥2 (Goodaire & Parmenter, 2006, 

p.174), 

an =
1
2

−5n( )+ 3n( )[ ]  Where  n ≥0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) a n = − 6 a n −1 + 7 a n − 2  Given, a 0 = 32 , a1 = − 17  (Goodaire & Parmenter, 2006, p.174), 

an =
49
8

−7n( )+
207

8
 Where n ≥2 
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4) a n = − 8 a n −1 − a n − 2
 Given a0 = 0  and a1 = 1  (Goodaire & Parmenter, 2006,p.174), 

an =
1

2 15
−4 + 15( )− −4 − 15( )[ ]∀n ≥ 0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5) a n +1 = 7 a n − 10 a n − 2
 Given a 0 = 10  and a1 = 29  (Goodaire & Parmenter, 2006, p.174), 

an =
3
5

5n( )+
21
6

2n( )∀n ≥ 0   
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5.4.3:  Instructor Solutions 

Name_________________________________ 

       Period____________ 

 

Lesson 3: Part 1- Checking the Explicit Formula:   

 

In lesson 2 we used the characteristic polynomial to find an explicit formulas 

for recurrence relations.  We will now check the explicit formulas with the 

recurrence relations to see if it will work for any of the natural numbers from 1, ∞[ ) . 

 

Example:  (Checking the Explicit Formula):  We have already found from example 

1 lesson 2 that the explicit formula for a n = 5 a n −1 − 6 a n − 2
 where a 0 = − 3 , a1 = − 2,  n ≥2, 

(Goodaire & Parmenter, 2006, p.181), is an = −7 2 n( )+ 4 3n( ). 

 

This first example is a check to see if the explicit formula will actually work as 

defined from the recurrence relation. 

 

(First, substitute)  

 

an = −7 2 n( )+ 4 3n( ) (into the recurrence relation below)  

 
a n = 5 a n −1 − 6 a n − 2  
 

−7 2n( )+ 4 3n( )= 5an −1 − 6an − 2  
 

 (Below, are the corresponding recurrence relations.) 

 

an = −7 2n( )+ 4 3n( )
an −1 = −7 2n −1( )+ 4 3n −1( )
an −2 = −7 2n −2( )+ 4 3n−2( )

 

    

(Next, substitute the corresponding recurrence relations into the original.)  

 

 

(Then, we can get the equation all on the left side.) 

 

 

(Distribute through the brackets to obtain.) 
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− 7 (2 n ) + 4 ( 3 n ) + 35 (2 n − 1 ) − 20 ( 3 n − 1 ) − 42 (2 n − 2 ) + 24 ( 3 n − 2 ) = 0  
 

(Next, collect like terms.) 

 

−7(2 n ) + 35(2 n −1) − 42(2 n − 2 )[ ]+ 4(3n ) − 20(3n −1) + 24 (3n − 2 )[ ]= 0  

 

(Factor) 

 

2 n − 2 −7(2 2 ) + 35(21) − 42(2 0 )[ ]+ 3n − 2 4(32 ) − 20(31) + 24 (30 )[ ]= 0  

 

(Using order of operations you will notice that each bracket simplifies to zero.) 

 
2 n − 2 0[ ] + 3 n − 2 0[ ] = 0  
 

 Check!  This verifies that the explicit formula is valid! 

 

 

Exercises:  For #1-5, check each explicit formula by substituting it into the 

recurrence relation. 

 

1) Recurrence relation a n = 4 an −1
 given a0 = 1, a1 = 4 , where  

Explicit formula:  a n = 4 n  For n ≥0 

 

Solution: 

 

4n = 4an −1

4n = 4(4n −1)

4n − 4(4n −1) = 0

4n −1(41 − 4) = 0

4n −1(0) = 0

0 = 0
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2) a n = − 2 a n −1 + 15 a n − 2
 Given a 0 = 1, a1 = 1  where n ≥2 (Goodaire & Parmenter, 2006,  

p.174), 

an =
1
2

−5n( )+ 3n( )[ ]  Where  n ≥0 

 

Solution: 

 

1

2
(−5n ) +

1

2
(3n ) = −2

1

2
(−5n −1) +

1

2
(3n −1)

 
  

 
  

+15
1

2
(−5n −2) +

1

2
(3n −2)

 
  

 
  

1

2
(−5n ) +

1

2
(3n ) = −2

1

2
(−5n −1) +

1

2
(3n −1)

 
  

 
  

+15
1

2
(−5n −2) +

1

2
(3n −2)

 
  

 
  

1

2
(−5n ) +

1

2
(3n ) + 2

1

2
(−5n −1) +

1

2
(3n −1)

 
  

 
  

−15
1

2
(−5n −2) +

1

2
(3n −2)

 
  

 
  

= 0

1

2
(−5n ) +

1

2
(3n ) + (−5n −1) + (3n −1) −

15

2
(−5n −2) −

15

2
(3n −2) = 0

1
2

(−5n ) + (−5n −1) −
15
2

(−5n −2) +
1
2

(3n ) + (3n −1) −
15
2

(3n −2) = 0

−5n −2{
1

2
(−52) + (−51) −

15

2
(−50)} + 3n −2{

1

2
(32) + (31) −

15

2
(30)} = 0

−5n −2{0} + 3n −2{0} = 0

0 + 0 = 0

0 = 0

 

 

3) a n = − 6 a n −1 + 7 a n − 2
 Given, a 0 = 32 , a1 = − 17  (Goodaire & Parmenter, 2006, p.174), 

an =
49
8

−7n( )+
207

8
 Where n ≥2 

 

Solution: 

 

49
8

(−7n ) +
207
8

= −6
49
8

(−7n −1) +
207
8

 
  

 
  

+ 7
49
8

(−7n −2) +
207

8

 
  

 
  

49
8

(−7n ) +
207
8

+ 6
49
8

(−7n −1) +
207
8

 
  

 
  

− 7
49
8

(−7n −2) +
207

8

 
  

 
  

= 0

49
8

(−7n ) +
207
8

+
294

8
(−7n −1) +

1242
8

−
343
8

(−7n −2) −
1449

8
= 0

−7n −2{
49
8

(−72) +
207
8

+
294

8
(−71) +

1242
8

−
343
8

(−70) −
1449

8
} = 0

−7n −2{0} = 0

0 = 0  
4) a n = − 8 a n −1 − a n − 2

 Given a0 = 0  and a1 = 1  (Goodaire & Parmenter, 2006, p.174),
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an =
1

2 15
−4 + 15( )− −4 − 15( )[ ]∀n ≥ 0

 
 

Solution: 

 
1

2 15
(−4 + 15)n − 1

2 15
(−4 − 15)n = −8

1

2 15
(−4 + 15)n −1 − 1

2 15
(−4 − 15)n −1 

  
 
  

−

1

2 15
(−4 + 15)n −2 −

1

2 15
(−4 − 15)n −2 

  
 
  

1

2 15
(−4 + 15)n − 1

2 15
(−4 − 15)n + 8

1

2 15
(−4 + 15)n −1 − 1

2 15
(−4 − 15)n −1 

  
 
  

+

1

2 15
(−4 + 15)n −2 − 1

2 15
(−4 − 15)n −2 

  
 
  

= 0

1

2 15
(−4 + 15)n −

1

2 15
(−4 − 15)n +

4

15
(−4 + 15)n −1 −

4

15
(−4 − 15)n −1 +

1

2 15
(−4 + 15)n −2 −

1

2 15
(−4 − 15)n −2 = 0

1

2 15
(−4 + 15)n +

4

15
(−4 + 15)n −1 +

1

2 15
(−4 + 15)n −2 −

1

2 15
(−4 − 15)n −

4

15
(−4 − 15)n −1 −

1

2 15
(−4 − 15)n −2 = 0

(−4 + 15)n −2{
1

2 15
(−4 + 15)2 +

4

15
(−4 + 15)1 +

1

2 15
(−4 + 15)0} + (−4 − 15)n −2{−

1

2 15
(−4 − 15)2 −

4

15
(−4 − 15)1 −

1

2 15
(−4 − 15)0} = 0

(−4 + 15)n −2{0} + (−4 − 15)n −2{0} = 0

0 + 0 = 0

0 = 0
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5) a n +1 = 7 a n − 10 a n − 2
 Given a 0 = 10  and a1 = 29  (Goodaire & Parmenter, 2006, p.174), 

an =
3
5

5n( )+
21
6

2n( )∀n ≥ 0   

 

Solution: 

 

3

5
(5n +1) +

21

6
(2n +1) = 7

3

5
(5n ) +

21

6
(2n )

 
  

 
  

−10
3

5
(5n −1) +

21

6
(2n −1)

 
  

 
  

3

5
(5n +1) +

21

6
(2n +1) − 7

3

5
(5n ) +

21

6
(2n )

 
  

 
  

+10
3

5
(5n −1) +

21

6
(2n −1)

 
  

 
  

= 0

3

5
(5n +1) +

21

6
(2n +1) −

21

5
(5n ) −

147

6
(2n ) + 6(5n −1) +

210

6
(2n −1) = 0

3
5

(5n +1) −
21
5

(5n ) + 6(5n −1) +
21
6

(2n +1) −
147

6
(2n ) +

210
6

(2n −1) = 0

5n −1{
3

5
(52) −

21

5
(51) + 6(50)} + 2n −1{

21

6
(22) −

147

6
(21) +

210

6
(20)} = 0

5n −1 0[ ]+ 2n −1 0[ ] = 0

0 + 0 = 0

0 = 0
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5.4.4:  Student Handout 

Part 2:  Guess and Check with Induction 

Name_________________________  

        Period___________ 

 

Lesson 3: Part 2-Guess and Check with Induction: 

 

Induction is a technique to prove that recurrence relations that are converted 

to a closed form formula will work for any of the natural numbers 1, ∞[ ].  

In lesson 2 you learned a technique for converting recurrence relations to closed 

form formulas known as the characteristic polynomial.  From the example in lesson 

2 your were shown how to solve the recurrence relation a n = 5 a n −1 − 6 a n − 2
, a 0 = − 3 , 

a1 = −2 , for n ≥2 we get a closed-form formula of an = −7 2 n( )+ 4 3n( ). 

 

After that you tested the initial conditions and maybe several other terms to 

see if the closed form formula works.  The problem is, how do you know that your 

formula will work for all of the natural numbers?  The Principle of Mathematical 

Induction proves that your formula will work for all the natural numbers.  

(The natural numbers (also known as the counting numbers) go from 1, ∞[ ]) .  

 

The Principle of Mathematical Induction states: 

 

If Pn
 is some statement about some natural number n and 

a) P1
 Is true (base case), and 

b) Assuming Pk
 is true implies that Pk +1

 is true, 

Then Pn
 must be true for all positive integers n. (Smith, Charles, Dossey, Bittenger, 

2001, p.634). 

 

Example: Induction 

 

Let a1, a 2 , a 3 , ...  be the sequence defined by a1 = 1 , and a k +1 = 3a k
 for k ≥1.  Prove that 

a n = 3 n − 1  for all n ≥1. (Goodaire & Parmenter, 2006, p.167). 

 

Proof: 

1) Base case for n =1, a 1 = 3 1 − 1 = 3 0 = 1 .  Check 

2) Assume a n = 3 n − 1  is true, then w.t.s. a n +1 = 3 n +1( ) −1 = 3 n  Implies that a n = 3 n  is  

True.  Then consider a k +1 = 3a k
 which is given, then an +1 = 3an = 31 3n −1( )= 3n .  

Check.  Therefore by induction (1 and 2) a n = 3 n − 1  is true for all n ≥1. 
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Exercises:  For exercises #1-4 use induction to prove the explicit formula is correct. 

For problem 4 find the first 6 terms of the sequence, guess a formula for the 

recurrence relation and use induction to prove your formula is correct. 

 

1) Prove: 

1 + 2 + 3 + ... + n =
n n + 1( )

2  
(Smith et al., 2001, p.635). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) Prove that the sum of n consecutive positive odd integers is n2.  In other words 

prove that 1 + 3 + 5 + ... + 2 n − 1( ) = n 2

 (Smith et al., 2001, p.634). 
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3) Suppose a1, a 2 , a 3 , ...  is a sequence of integers such that a1 = 0  and for n ≥1, 

a n = n 3 + a n − 1 .  Prove that an =
n − 1( ) n − 2( ) n 2 + n + 2( )

4
 for every integer n ≥1. 

(Goodaire & Parmenter, 2006, p.167). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) Let a1, a 2 , a 3 , ...  be the sequence defined by a1 = 1  and for n ≥1, a n = 2 a n −1 + 1 .  Write 

down the first six terms of the sequence.  Guess a formula for an
 and prove that your 

guess is correct (Goodaire & Parmenter, 2006, p.167). 
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5.4.5:  Instructor Solutions 

Name___________________________ 

Period____________ 

 

Lesson 3: Part 2-Guess and Check with Induction 

 

Induction is a technique to prove that recurrence relations that are converted 

to a closed form formula will work for any of the natural numbers 1, ∞[ ].  

In lesson 2 you learned a technique for converting recurrence relations to closed 

form formulas known as the characteristic polynomial.  From the example in lesson 

2 your were shown how to solve the recurrence relation a n = 5 a n −1 − 6 a n − 2
, a 0 = − 3 , 

a1 = −2 , for n ≥2 we get a closed-form formula of an = −7 2 n( )+ 4 3n( ). 

 

After that you tested the initial conditions and maybe several other terms to 

see if the closed form formula works.  The problem is, how do you know that your 

formula will work for all of the natural numbers?  The Principle of Mathematical 

Induction proves that your formula will work for all the natural numbers.  

(The natural numbers (also known as the counting numbers) go from 1, ∞[ ]) .  

 

The Principle of Mathematical Induction states: 

 

If Pn
 is some statement about some natural number n and 

a) P1
 Is true (base case), and 

b) Assuming Pk
 is true implies that Pk +1

 is true, 

Then Pn
 must be true for all positive integers n. (Smith et al., 2001, p.634). 

 

Example:  Induction 

 

Let a1, a 2 , a 3 , ...  be the sequence defined by a1 = 1 , and a k +1 = 3a k
 for k ≥1.  Prove that 

a n = 3 n − 1  for all n ≥1. (Goodaire & Parmenter, 2006, p.167). 

 

Proof: 

1) Base case for n =1, a 1 = 3 1 − 1 = 3 0 = 1 .  Check 

2) Assume a n = 3 n − 1  is true, then w.t.s. a n +1 = 3 n +1( ) −1 = 3 n  Implies that a n = 3 n  is  

True.  Then consider a k +1 = 3a k
 which is given, then an +1 = 3an = 31 3n −1( )= 3n .  

Check.  Therefore by induction (1 and 2) a n = 3 n − 1  is true for all n ≥1. 
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Exercises:  For exercises #1-4 use induction to prove the explicit formula is correct. 

For problem 4 find the first 6 terms of the sequence, guess a formula for the 

recurrence relation and use induction to prove your formula is correct 

 

 

 

 

1) Prove: 

 1 + 2 + 3 + ... + n =
n n + 1( )

2  
(Smith et al., 2001, p.635). 

 

Solution: 

 

a) Base case when n = 1 →1 + 2 + 3 + ... + 1 =
1 1 + 1( )

2
→1 = 1 .  Check 

b) Proof:  Suppose n = k  that is 1 + 2 + 3 + ... + k =
k k + 1( )

2
, w.t.s. That the 

statement is true when n = k +1.  Adding k +1 to both sides results in: 

 

1+ 2 + 3 + ...+ k + k +1( ) =
k k +1( )

2
+ k +1( )

=
k k +1( )+ 2 k +1( )

2
→

k 2 + k + 2k + 2

2
→

k 2 + 3k + 2
2

→
k +1( ) k + 2( )

2

 

∴  By induction, a n =
n n + 1( )

2
 For all n ≥1. 

 

2) Prove that the sum of n consecutive positive odd integers is n2.  In other words 

prove that 1 + 3 + 5 + ... + 2 n − 1( ) = n 2

 (Smith et al., 2001, p.635). 

 

Solution: (Smith et. al, 2001, p.634-635). 

 

a) Base case for when n =1 → 2 •1−1( ) =12 →1 =1.  Check 

b) Proof:  Suppose n = k , that is, 1 + 3 + 5 + ... + 2 k − 1( ) = k 2 , w.t.s. That the 

statement is true when n = k +1.  1 + 3 + 5 + ... + 2 k − 1( ) = k 2  Assumed true for k .  

Adding 2 k + 1( ) − 1  to both sides results in: 

 

1+ 3 + 5 + ...+ 2k −1( )+ 2 k +1( )−1[ ]= k 2 + 2 k +1( )−1[ ]
= k 2 + 2k + 2 −1 →k 2 + 2k +1 → k +1( )2

 

∴  By induction  

 

a n = n 2  Is true for all n ≥1. 
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3) Suppose a1, a 2 , a 3 , ...  is a sequence of integers such that a1 = 0  and for n ≥1, 

a n = n 3 + a n − 1 .  Prove that an =
n − 1( ) n − 2( ) n 2 + n + 2( )

4
 for every integer n ≥1. 

(Goodaire & Parmenter, 2006, p.167). 

 

Solution: (Goodaire & Parmenter, 2006, p. S-28). 

 

a) Base case for when n = 1 → a1 =
1 − 1( ) 1 + 2( ) 12 + 1 + 2( )

4
→ a1 = 0 .  Check 

b) Proof:  Suppose n = k  and assume ak =
k − 1( ) k + 2( ) k 2 + k + 2( )

4
 is true, then 

ak +1 =
k +1( ) −1( ) k +1( )+ 2( ) k +1( )2 + k +1( )+ 2( )

4
 is true 

 

Consider a n = n 3 + a n − 1
 which is given then a k = k 3 + a k − 1

 results in: 

ak+1 = k +1( )3 + ak+1−1

= (k +1)3 + ak

= (k +1)3 +
(k −1)(k + 2)(k 2 + k − 2)

4

=
4(k 2 + 2k +1)(k +1) + (k 2 + k − 2)(k 2 + k + 2)

4

=
k 4 + 6k 3 +13k 2 +12k

4

=
(k)(k + 3)((k +1)2 + k + 3)

4

 

∴   an =
(n − 1)( n + 2)( n 2 + n + 2)

4
  For all n ≥1. 

 

 

 

 

 

 

4) Let a1, a 2 , a 3 , ...  be the sequence defined by a1 = 1  and for n ≥1, a n = 2 a n −1 + 1 .  Write 

down the first six terms of the sequence.  Guess a formula for an
 and prove that your 

guess is correct (Goodaire & Parmenter, 2006, p.167). 

 

Solution: (Goodaire & Parmenter, 2006, p. S-28). 

 
a1 = 1,a2 = 3,a3 = 7,a4 = 15,a5 = 31,a6 = 63  

a) Base case when n = 1 →1 + 2 + 3 + ... + 1 =
1 1 + 1( )

2
→1 = 1 .  Check 
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b) Proof:  Suppose n = k  that is 1 + 2 + 3 + ... + k =
k k + 1( )

2
, w.t.s. That the 

statement is true when n = k +1.  Adding k +1 to both sides results in: 

 

1+ 2 + 3 + ...+ k + k +1( ) =
k k +1( )

2
+ k +1( )

=
k k +1( )+ 2 k +1( )

2
→

k 2 + k + 2k + 2

2
→

k 2 + 3k + 2
2

→
k +1( ) k + 2( )

2

 

∴  By induction, a n =
n n + 1( )

2
 holds for all n ≥1. 
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5.4.6:  Lesson Reflection 

 

Lesson 3:  Parts 1 and 2-Checking the Explicit Formula and the Principle of 

Mathematical Induction 

 

 Part 1 of lesson 3 checking the solution for accuracy was fairly successful.  

Since students have had Algebra 1 and Algebra 2 they were familiar with checking 

solutions by substituting in the solution to the original equation(s) to do a check.  

Most of the parts of the process of this lesson were familiar except for when the 

exponent on some of the terms was n −1 and n −2 and n.  Students had trouble with 

rules of exponents and also factoring with those same exponents.  So other than 

algebraic problems most students felt comfortable with the process they were 

doing. 

 Part 2 of this lesson by far was the least successful and the hardest for the 

students.  It did not help that about two-thirds of the class was gone because of a 

school activity.  Students that were there had trouble grasping the topic 

conceptually.  They had a hard time with notation, and with part 2 in the principle of 

mathematical induction.  We only got through 2 problems.  Most of the period was 

taken up with going over the example that I modeled for them.  They had many 

questions.  In the end maybe if I look at it in a different way it was not that it was 

unsuccessful it was that it was more challenging for them.  Even if the students took 

away from the lesson some new insight and mathematical ideas then it was worth it. 
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5.5:  The Pell Sequence 

5.5.1:  Lesson Plan 

Lesson 4:  The Pell Sequence 

Grade level:  

 

 High School (9-12) 

Subject:   

 

Advanced Algebra 

II 

 

Unit Title:   

 

Techniques for 

creating explicit 

formulas from 

recurrence 

relations 

Unit topic:   

 

Discrete Math-

Recurrence 

Relations 

Lesson#  

 

Four 

 

Lesson Title:  

 

The Pell Sequence 

Materials: 

 

Handout 

 

Graphing 

calculator 

 

 

Overview and 

purpose:   

 

Use the 

characteristic 

polynomial to 

solve the Pell 

Sequence.  Use an 

alternate explicit 

formula to find 

terms of the Pell 

Sequence. 

 

Objectives:  

 

     Now that students are familiar with the characteristic polynomial they will use 

this technique to solve the Pell Sequence.  Next they will use an alternate explicit 

formula to find the first few terms of the Pell Sequence. 

 

Information: 

 

     In this lesson students will use the characteristic polynomial to get an explicit 

formula for the Pell Sequence.  This recurrence relation should be a challenge for 

many of the students since it involves roots that are irrational as well as using the 

quadratic formula.  For the instructor there should be no need to model this 

problem since the students should have all the tools necessary to solve the first 

problem. 

 

     In problem 2 the instructor should give a brief review on factorials and maybe 

one example to illustrate how to use this unique explicit formula.  Problem 2 will 

show also that there are alternate methods or explicit formulas for the same 

recurrence relation. 
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Verification:   

 

     Students will check each other for understanding during the class period by 

having their peers present their findings in front of the classroom.  They will teach 

each other.  Teacher will also check for understanding by prompting and promoting 

discussion and with open-ended questioning.  Either at the end of the lesson or the 

following class period the teacher will collect student work and grade and give 

appropriate feedback.  The following period the class should review the previous 

days lesson to ensure comprehension and understanding before moving on to the 

next lesson. 

 

Activity:   

 

     With the handout provided students will go through the handout in a tutorial 

investigative like approach to complete and comprehend the material.  The 

modeling or teaching by the instructor should be minimal compared to other 

lessons since most of the tools being used the students have already learned. 

 

Summary:   

 

     At the end of this lesson students should feel more comfortable and confident in 

using the characteristic polynomial with a more challenging recurrence relation. 
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5.5.2:  Student Handout 

 

Name_________________________________ 

       Period__________ 

 

Lesson 4: The Pell Sequence 

 

Exercises: 

 

1) The Pell Sequence is defined by p0 = 1, p1 = 2  and p n = 2 p n −1 + p n − 2
 for n ≥2. 

(Goodaire & Parmenter, 2006, p.182). 

 

a) Find the first 6 terms of the sequence 

 

 

 

 

 

 

 

b) Use the characteristic polynomial technique to solve this recurrence 

relation (Goodaire & Parmenter, 2006, p.182). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) There exist closed-form solutions for pn
 (Pell Sequence).  Below, is one example.  

Calculate the first 6 terms of the sequence by using the formula. 

 

 

 

pn =
i + j + k( )!

i! j!k!i, j ,k≥0
i+ j +2k =n

∑
 

(Goodaire & Parmenter, 2006, p.182).

 



 111 

5.5.3:  Instructor Solutions 

Name_________________________________ 

       Period__________ 

 

Lesson 4: The Pell Sequence 

 

Exercises: 

 

1) The Pell Sequence is defined by p0 = 1, p1 = 2  and p n = 2 p n −1 + p n − 2
 for n ≥2. 

(Goodaire & Parmenter, 2006, p.182). 

 

a) Find the first 6 terms of the sequence. 

 

Solution: 

 

1,2,5,12,29,70,169,408,... 
 

b) Use the characteristic polynomial technique to solve this recurrence relation. 

(Goodaire & Parmenter, 2006, p.182). 

 

Solution: 

 
pn − 2pn −1 − pn −2 = 0

x 2 − 2x −1 = 0

x =
−b ± b2 − 4ac

2a

x = 2 ± (−2)2 − 4(1)(−1)
2(1)

x = (1 ± 2)

x1 = (1+ 2),x2 = (1 − 2)

pn = c1(x1
n ) + c2(x2

n )

p0 →1 = c1((1+ 2)0) + c2((1 − 2)0)

p1 →2 = c1((1+ 2)1) + c2((1 − 2)1)

1 = c1 + c2

2 = c1(1+ 2) + c2(1 − 2)

c1 =
2 + 2

4
c2 =

2 − 2
4

∴ pn = (
2 + 2

4
)(1+ 2)n + (

2 − 2

4
)(1 − 2)n ,n ≥ 0
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2) There exist closed form solutions for pn
 (Pell Sequence).  Below is one example.  

Calculate the first 6 terms of the sequence by using the formula below. 

pn =
i + j + k( )!

i! j!k!i, j ,k≥0
i+ j +2k =n

∑
 

(Goodaire & Parmenter, 2006, p.182).

 

Solution: 

 
p0 =1

i + j + 2k = n

i + j + 2k = 0

(i, j,k)

(0,0,0)

(0 + 0 + 0)!
0!0!0!

=
1
1

=1

 

 
p1 = 2

i + j + 2k = n

i + j + 2k =1

(i, j,k)

(0,1,0) + (1,0,0)

(0 +1+ 0)!
0!1!0!

+ (1+ 0 + 0)!
1!0!0!

1
1

+
1
1

=1+1 = 2

 

 
p2 = 5

i + j + 2k = n

i + j + 2k = 2

(i, j,k)

(2,0,0) + (1,1,0) + (0,2,0) + (0,0,1)

(2 + 0 + 0)!
2!0!0!

+ (1+1+ 0)!
1!1!0!

+ (0 + 2 + 0)!
0!2!0!

+ (0 + 0 +1)!
0!0!1!

2
2

+
2
1

+
2
2

+
1
1

=1+ 2 +1+1 = 5
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p3 =12

i + j + 2k = n

i + j + 2k = 3

(i, j,k)

(0,1,1) + (1,0,1) + (2,1,0) + (1,2,0) + (3,0,0) + (0,3,0)

(0 +1+1)!
0!1!1!

+
(1+ 0 +1)!

1!0!1!
+

(2 +1+ 0)!
2!1!0!

+
(1+ 2 + 0)!

1!2!0!
+

(3 + 0 + 0)!
3!0!0!

+
(0 + 3+ 0)!

0!3!0!
2 + 2 + 3 + 3 +1+1 =12

 

 

 
p4 = 29

i + j + 2k = n

i + j + 2k = 4

(i, j,k)

(0,2,1) + (2,0,1) + (1,1,1) + (0,0,2) + (1,3,0) + (3,1,0) + (4,0,0) + (0,4,0) + (2,2,0)

(0 + 2 +1)!
0!2!1!

+
(2 + 0 +1)!

2!0!1!
+

(1+1+1)!
1!1!1!

+
(0 + 0 + 2)!

0!0!2!
+

(1+ 3+ 0)!
1!3!0!

+
(3+1+ 0)!

3!1!0!
(4 + 0 + 0)!

4!0!0!
+

(0 + 4 + 0)!
0!4!0!

+
(2 + 2 + 0)!

2!2!0!
3+ 3 + 6 +1+ 4 + 4 +1+1+ 6 = 29
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5.5.3:  Lesson Reflection 

Lesson 4:  The Pell Sequence 

Coming off the hard and complicated lesson of guess and check with 

induction we next turned our attention to the Pell sequence.  The first problem went 

well of finding the first 6 terms in the sequence.  To my surprise more students than 

I thought got an explicit formula for the Pell Sequence.  I had them use the 

Characteristic Polynomial since they were most familiar and proficient at that.  

These first two problems were done during the first 50 minutes to an hour of a 

period.  The last 25-30 minutes I went over problem 3 from the AMM article, which 

was another version of a closed form formula for the Pell sequence.  I reviewed 

factorials and I taught the students summation notation and what all of the symbols 

mean.  I also demonstrated on their graphing calculators how to find and use the 

factorial operation.  I did this by showing them how to compute the first two terms, 

p0
 and p1

. 

Other than learning the different symbols and the notation, the only problem 

they had were some students were getting confused with the index number n.  For 

example, in the case below some students thought n was 1.  These students were 

trying to find combinations where i, j, and k  would sum up to one rather than 0. 

p0 =1

i + j + 2k = n

i + j + 2k = 0

(i, j,k)

(0,0,0)

(0 + 0 + 0)!
0!0!0!

=
1
1

=1
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 Like the characteristic polynomial this lesson went well.  In fact out of the 

four lessons so far I felt this one went the best.  At this point they have had enough 

teaching, confidence and experience to handle different recurrence relations.  Being 

comfortable with the characteristic polynomial as well quadratics and the simplicity 

of factorials made this one of the most successful and fun so far.  This took one 

lesson with questions at the beginning of the next period. 
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5.6:  Tower of Hanoi 
 

5.6.1:  Lesson Plan 

Lesson 5:  The Tower of Hanoi 

 

Grade level:  

 

 High School (9-12) 

Subject:   

 

Advanced Algebra 

II 

 

Unit Title:   

 

Techniques for 

creating explicit 

formulas from 

recurrence 

relations 

Unit topic:   

 

Discrete Math-

Recurrence 

Relations 

Lesson#  

 

Five 

 

Lesson Title:  

 

The Tower of 

Hanoi 

Materials: 

 

Handout 

 

Graphing 

calculator 

 

Class set of the 

tower of Hanoi 

 

 

Overview and 

purpose:   

 

Generate a 

sequence, give a 

recurrence relation 

and an explicit 

formula through 

the Tower of Hanoi 

problem 

 

Objectives:  

 

     Students will use the Tower of Hanoi problem to generate a sequence, give a 

recurrence relation and an explicit formula. 

 

Information: 

 

     In this lesson it is not necessary, but a class set of The Tower of Hanoi would be 

helpful.  Tower of Hanoi puzzles can be bought off the internet or can be made.  I 

made one using florist foam or Styrofoam for the base, Pencils for the 3 rods and 

different size O washers for the disks.  If the Tower of Hanoi puzzle is not available 

then the instructor and/or students can use a table to show the moves.   

Groups of 2 to 5 work best.  Have students make a table for each amount of "n" 

discs.  Students should be able to do n = 0,1,2,3,4,5  discs with 6 or more being more 

challenging as well as time consuming. 

 

 This lesson similar to the Pell Sequence should not need much modeling in regards 

to the activity because students have learned many of the tools necessary to do this 

activity.  A brief demonstration on how the puzzle works will suffice.  A quick review 

on scientific notation might help with the last question on the handout. 
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Verification:  

     Students will check each other for understanding during the class period by 

having their peers present their findings in front of the classroom.  They will teach 

each other.  Teacher will also check for understanding by prompting and promoting 

discussion and with open-ended questioning.  Either at the end of the lesson or the 

following class period the teacher will collect student work and grade and give 

appropriate feedback.  The following class period the class should review the 

previous days lesson to ensure comprehension and understanding before moving 

on to the next lesson. 

 

Activity:   

 

     With the handout and the Tower of Hanoi puzzle, students will create tables 

for n = 0,1,2,3,4,5  with 6 or more being optional.  After doing this, students will guess 

and check to find a recurrence relation.  They will then create an explicit formula by 

checking all the terms in relation to their moves.  Finally, they will answer a 

question, which asks how long it will take with different amounts of n moves. 

Summary:   

 

     The Tower of Hanoi puzzle will show the students that a sequence, a recurrence 

relation and an explicit formula can all be created with the use of a model.  This 

model as well as others may model an application setting in the real world as well as 

generate discussion as to where recursion can be used in real life settings. 
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5.6.2:  Student Handout 

Name_________________________________ 

       Period_____________ 

 

Lesson 5:  The Tower of Hanoi  

 

Professor Claus introduced the Tower of Hanoi puzzle in 1883.  It consists of 

three pegs and a number of disks of differing diameters, each with a hole in the 

center.  The discs initially sit on one of the pegs in order of decreasing diameter 

(smallest at top, largest at bottom), thus forming a triangular tower.  The object is to 

move the tower to one of the other pegs by transferring the discs to any peg one at a 

time in such a way that no disc is ever placed upon a smaller one (Merris, 2003, 

p.332-333). 

 

Problem 1 (parts a thru e): (Goodaire & Parmenter, 2006, p.175). 

 

a) Solve the puzzle when there are n = 0,1,2,3,4,5  discs and show your moves by 

completing a table for each disc amount like shown below.  [The pegs are 

labeled A, B, C and use an asterisk  (*) to denote an empty peg.  The discs are 

numbered in order of increasing size, thus disc 1 is the smallest.] 

 

 

Example of a table below with n=2 discs. 

 

 A B C 

Initial Position 1,2 * * 

Move 1 ?? ?? ?? 

Move 2 ?? ?? ?? 

Etc.    

 

 

b) Give a recurrence relation for an
, the number of moves required to transfer n 

discs from one peg to another. 

 

 

 

c) Find an explicit formula for an
 

 

 

 

 

d) Suppose we can move a disc a second.  Estimate the time required to transfer 

the discs if n =8, n =16, and n = 64. 
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5.6.3:  Instructor Solutions 

Name_________________________________ 

       Period_____________ 

 

 

Lesson 5:  The Tower of Hanoi  

 

Professor Claus introduced the Tower of Hanoi puzzle in 1883.  It consists of 

three pegs and a number of disks of differing diameters, each with a hole in the 

center.  The discs initially sit on one of the pegs in order of decreasing diameter 

(smallest at top, largest at bottom), thus forming a triangular tower.  The object is to 

move the tower to one of the other pegs by transferring the discs to any peg one at a 

time in such a way that no disc is ever placed upon a smaller one (Merris, 2003, 

p.332-333). 

 

Problem 1 (parts a thru e): (Goodaire & Parmenter, 2006, p.175). 

 

a) Solve the puzzle when there are n = 0,1,2,3,4,5  discs and show your moves by 

completing a little table for each disc amount like shown below.  [The pegs 

are labeled A, B, C and use an asterisk  (*) to denote an empty peg.  The discs 

are numbered in order of increasing size, thus disc 1 is the smallest.] 

 

Solution: 

 

Table with n=0 discs. 

 

 A B C 

Initial Position and 

Final Position 

* * * 

 

Table with n=1 discs. 

 

 A B C 

Initial Position 1 * * 

Move 1 * 1 * 

 

Table with n=2 discs. 

 

 A B C 

Initial Position 1,2 * * 

Move 1 2 * 1 

Move 2 * 2 1 

Move 3 * 1,2 * 
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Table with n=3 discs. 

 

 A B C 

Initial Position 1,2,3 * * 

Move 1 2,3 * 1 

Move 2 3 2 1 

Move 3 3 1,2 * 

Move 4 * 1,2 3 

Move 5 1 2 3 

Move 6 1 * 2,3 

Move 7 * * 1,2,3 

 

Table with n=4 discs. 

 

 A B C 

Initial Position 1,2,3,4 * * 

Move 1 2,3,4 * 1 

Move 2 3,4 2 1 

Move 3 3,4 1,2 * 

Move 4 4 1,2 3 

Move 5 1,4 2 3 

Move 6 1,4 * 2,3 

Move 7 4 * 1,2,3 

Move 8 * 4 1,2,3 

Move 9 * 1,4 2,3 

Move 10 2 1,4 3 

Move 11 1,2 4 3 

Move 12 1,2 3,4 * 

Move 13 2 3,4 1 

Move 14 * 2,3,4 1 

Move 15 * 1,2,3,4 * 

 

Table with n=5 discs. 

 

 A B C 

Initial Position 1,2,3,4,5 * * 

Move 1 2,3,4,5 * 1 

Move 2 3,4,5 2 1 

Move 3 3,4,5 1,2 * 

Move 4 4,5 1,2 3 

Move 5 1,4,5 2 3 

Move 6 1,4,5 * 2,3 

Move 7 4,5 * 1,2,3 

Move 8 5 4 1,2,3 
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Move 9 5 1,4 2,3 

Move 10 2,5 1,4 3 

Move 11 1,2,5 4 3 

Move 12 1,2,5 3,4 * 

Move 13 2,5 3,4 1 

Move 14 5 2,3,4 1 

Move 15 5 1,2,3,4 * 

Move 16 * 1,2,3,4 5 

Move 17 1 2,3,4 5 

Move 18 1 3,4 2,5 

Move 19 * 3,4 1,2,5 

Move 20 3 4 1,2,5 

Move 21 3 1,4 2,5 

Move 22 2,3 1,4 5 

Move 23 1,2,3 4 5 

Move 24 1,2,3 * 4,5 

Move 25 2,3 * 1,4,5 

Move 26 3 2 1,4,5 

Move 27 3 1,2 4,5 

Move 28 * 1,2 3,4,5 

Move 29 1 2 3,4,5 

Move 30 1 * 2,3,4,5 

Move 31 * * 1,2,3,4,5 

 

 

 

b) Give a recurrence relation for an
, the number of moves required to transfer n 

discs from one peg to another. 

 
a n = 2 a n −1 + 1  

 

c) Find an explicit formula for an
 

 

a n = 2 n − 1  For all n ≥0. 
 

d) Suppose we can move a disc a second.  Estimate the time required to transfer 

the discs if n =8, n =16, and n = 64 (Goodaire & Parmenter, 2006, p.147). 

 

When n =8 it takes 2 8 − 1 = 255  seconds, which is ≈ 4 minutes. 

 

When n =16 it takes 216 − 1 = 65535  seconds, which is ≈18 hours. 

  

 When n = 64 it takes 2 64 − 1 ≈ 5.8 × 10 11  or 580,000,000,000 years. 
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5.6.4:  Lesson Reflection 

Lesson 5:  Tower of Hanoi 

Lesson 5 was definitely the most fun and accessible to the students.  I made a 

Tower of Hanoi puzzle for each table group.  It consisted of bricks of foam, pencils, 

and different size O washers from the hardware store.  With minimal explanation 

each group set out to solve the puzzle.  We talked about if you had n =0 discs then it 

would take 0 moves.   Also, if you had n =1 discs then it would take 1 move to get to 

the next peg.  With n = 3 discs the students figured out how many moves fairly 

quickly.  With n = 4 and n =5 discs it took some more time, especially for the n =5 

discs.  In the end, all of the groups did n = 4 discs and most of the groups finished 

n =5 discs.  One student figured out the closed-form formula after the round of 4 

discs.  This activity was a fun and interesting closure to the unit on recurrence 

relations.  It was also the last day of semester 1, so it was a perfect activity to do on 

the last day of class. 
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5.7:  Back Substitution 

5.7.1:  Lesson Plan 

Lesson 6:  Back Substitution 

Grade level:  

 

 High School (9-12) 

Subject:   

 

Advanced Algebra 

II 

 

Unit Title:   

 

Techniques for 

creating explicit 

formulas from 

recurrence 

relations 

Unit topic:   

 

Discrete Math-

Recurrence 

Relations 

Lesson#  

 

 

Six 

 

Lesson Title:  

 

Back Substitution 

Materials: 

 

Handout 

 

Graphing 

calculator 

 

 

Overview and 

purpose:   

 

Use back 

substitution with 

recurrence 

relations to find 

explicit formulas 

 

Objectives:  

 

     Students will use the technique of back substitution to create explicit formulas 

from recurrence relations. 

 

Information: 

 

This is another technique used to create an explicit formula.  The instructor may 

choose to do this any time during the unit.  Back substitution is a good way to show 

students patterns in sequences.  They can visibly see number patterns sometimes 

“pop” out of the page.  This technique will also help students comprehend series or 

even power series summations.  Later in the unit, generating functions may be a 

topic that is chosen to challenge students. 

Verification:   

 

 Students will check each other for understanding during the class period by having 

their peers present their findings in front of the classroom.  They will teach each 

other.  Teacher will also check for understanding by prompting and promoting 

discussion and with open-ended questioning.  Either at the end of the lesson or the 

following class period the teacher will collect student work and grade and give 

appropriate feedback.  The following class period the class should review the 

previous days lesson to ensure comprehension and understanding before moving 

on to the next lesson. 
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Activity:  

 

    With the handout students will do the problems using the back substitution 

technique. 

 

Summary:  

  

     Like stated earlier, back substitution is good for actually seeing patterns within 

the recurrence relation itself as well as the number sequence.  It will also show 

students’ “naturally” how geometric sums will be produced many times by using 

back substitution. 
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5.7.2:  Student Handout 

 

Name_________________________________  

      Period___________ 

 

Lesson 6:  Back Substitution 

 

So far you have learned some techniques for taking a recurrence relation and 

converting it to an explicit formula.  In lesson 2 we learned and practiced the 

characteristic polynomial.  In lesson 3 we learned and practiced guess and check 

with induction to prove that our explicit formula works.  Here in lesson 6 we will 

use another technique called back substitution.  Back substitution is a good 

technique and starting point to learn about geometric sums.  Below is an example on 

how back substitution works to help you solve some on your own. 

 

Example  

 

Given the recurrence relation an = 2an −1 +1,n ≥1 with initial condition of a1 =1 find 

the explicit formula. 

 

Solution: 

 
an = 2an −1 +1

= 2 2an −2 +1( )+1

= 2 2 2an −3 +1( )( )+ 2 +1

= 2 2 2 2an −4 +1( )( )( )+ 22 + 2 +1

= 2 2 2 2 2an −5 +1( )( )( ) 
 
  

 
 + 23 + 22 + 2 +1

= 2n −1a1 + 2n −2 + 2n −3 + 2n −4 + 2n −5...+ 2 +1

= 2n −1a1 +
2n −1 −1

2 −1
→2n −1 1( )+ 2n −1 −1

→ 2n −1 + 2n −1 −1( )→2 2n −1 −1( )→∴an = 2n −1,∀n ≥1

 

 

Exercises:  Use the back substitution technique to convert each recurrence relation 

to an explicit formula.  Make sure and test the initial conditions and a few more to 

see if your formula works. 

 

1) Given the recurrence relation 5an −1 −1,n ≥1 with the initial condition of a1 =1, find 

the explicit formula. 
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2) Given the recurrence relation 3an −1 +1,n ≥1 with the initial conditions of a1 =1, 

find the explicit formula. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) Given the recurrence relation an = 4an −1 +1 with the initial condition of a1 =1, find 

the explicit formula. 
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5.7.3:  Instructor Solutions 

 

Name_________________________________  

      Period___________ 

 

Lesson 6:  Back Substitution 

 

So far you have learned some techniques for taking a recurrence relation and 

converting it to an explicit formula.  In lesson 2 we learned and practiced the 

characteristic polynomial.  In lesson 3 we learned and practiced guess and check 

with induction to prove that our explicit formula works.  Here in lesson 6 we will 

use another technique called back substitution.  Back substitution is a good 

technique and starting point to learn about geometric sums.  Below is an example on 

how back substitution works to help you solve some on your own. 

 

Example  

 

Given the recurrence relation an = 2an −1 +1,n ≥1 with initial condition of a1 =1 find 

the explicit formula. 

 

Solution: 

 
an = 2an −1 +1

= 2 2an −2 +1( )+1

= 2 2 2an −3 +1( )( )+ 2 +1

= 2 2 2 2an −4 +1( )( )( )+ 22 + 2 +1

= 2 2 2 2 2an −5 +1( )( )( ) 
 
  

 
 + 23 + 22 + 2 +1

= 2n −1a1 + 2n −2 + 2n −3 + 2n −4 + 2n −5...+ 2 +1

= 2n −1a1 +
2n −1 −1

2 −1
→2n −1 1( )+ 2n −1 −1

→ 2n −1 + 2n −1 −1( )→2 2n −1 −1( )→∴an = 2n −1,∀n ≥1

 

 

Exercises:  Use the back substitution technique to convert each recurrence relation 

to an explicit formula.  Make sure and test the initial conditions and a few more to 

see if your formula works. 

 

1) Given the recurrence relation 5an −1 −1,n ≥1 with the initial condition of a1 =
3
2

, find 

the explicit formula. 
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Solution: 

 
an = 5an −1 −1

= 5 5an −2 −1( )−1

= 5 5 5an −3 −1( )( )− 5 −1

= 5 5 5 5an −4 −1( )( )( )− 52 − 5 −1

= 5 5 5 5 5an −5 −1( )( )( ) 
 
  

 
 − 53 − 52 − 5 −1

= 5n −1a1 − 5n −2 − 5n −3 − 5n −4 − 5n −5... − 5 −1

= 5n −1 3
2

 
 
 
 
 
 − 5n −2 + 5n −3 + 5n −4 + 5n −5...+ 5 +1( )

= 5n −1a1 −
5n −1 −1

5 −1
→5n −1 3

2

 
 
 
 
 
 −

5n −1 −1
4

 

 
 

 

 
 

→
6 • 5n −1 − 5n −1 +1

4
→

5n −1 6 −1( )+1

4
→∴an =

5n +1

4
,∀n ≥1

 

 

 

2) Given the recurrence relation 3an −1 +1,n ≥1 with the initial conditions of a1 =1, 

find the explicit formula. 

 

Solution: 

 
an = 3an −1 +1

= 3 3an −2 +1( )+1

= 3 3 3an −3 +1( )( )+ 3+1

= 3 3 3 3an −4 +1( )( )( )+ 32 + 3+1

= 3 3 3 3 3an −5 +1( )( )( ) 
 
  

 
 + 33 + 32 + 3+1

= 3n −1a1 + 3n −2 + 3n −3 + 3n −4 + 3n −5...+ 3+1

= 3n −1a1 +
3n −1 −1

3 −1
→3n −1 1( )+

3n −1 −1
2

→ 3n −1 +
3n −1 −1

2

 

 
 

 

 
 →

2 3n −1( )+ 3n −1 −1

2

 

 
 
 

 

 
 
 

→
3n −1 2 1( )+1( )−1

2
→

3n −1 • 3( )−1

2
→∴an =

3n −1
2

,∀n ≥1
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3) Given the recurrence relation an = 4an −1 +1,n ≥1 with the initial condition of 

a1 =1, find the explicit formula. 

 

Solution: 
an = 4an −1 +1

= 4 4an −2 +1( )+1

= 4 4 4an −3 +1( )( )+ 4( )+1

= 4 4 4 4an −4 +1( )( )( )+ 4( )2 + 4( )+1

= 4 4 4 4 4an −5 +1( )( )( ) 
 
  

 
 + 4( )3 + 4( )2 + 4( )+1

= 4( )n −1
a1 + 4( )n −2 + 4( )n −3 + 4( )n −4 + 4( )n −5

...+ 4( )+1

= 4( )n −1
a1 +

4( )n −1 −1

4 −1
→ 4( )n −1

1( )+
4( )n −1 −1

3

→ 4( )n −1 +
4( )n −1 −1

3

 

 
  

 

 
  →

3 4( )n −1( )+ 4( )n −1 −1

3

 

 

 
 

 

 

 
 

→
4n −1 3 1( )+1( )−1

3
→

4( )n −1 • 4( )−1

3
→∴an =

4( )n −1

3
,∀n ≥1
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5.7.4:  Lesson Reflection 

Lesson 6:  Back Substitution 

 Back substitution is a great technique for students’ to see patterns within the 

recurrence relation.  By doing this technique students’ will notice repetition in the 

recurrence relations that will allow them to solve for the closed-form formula.  Back 

substitution may be done in any part of the curriculum.  I think it would be helpful 

and provide a deeper understanding of recurrence relations if this lesson was done 

after an introduction to recurrence relations.  By doing this lesson at the beginning 

of the unit it might help students’ see the “big picture” rather than just doing 

computational math for instance, when trying to solve recurrence relations using 

the characteristic polynomial or other techniques. 
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5.8:  Flagpoles 

5.8.1:  Lesson Plan 

Lesson 7:  Flagpoles 

 

Grade level:  

 

 High School (9-12) 

Subject:   

 

Advanced Algebra 

II 

 

Unit Title:   

 

Techniques for 

creating explicit 

formulas from 

recurrence 

relations 

Unit topic:   

 

Discrete Math-

Recurrence 

Relations 

Lesson#  

 

 

Seven 

 

Lesson Title:  

 

Flagpoles 

Materials: 

 

Handout 

 

Graphing 

calculator 

Overview and 

purpose:   

 

Use alternate Pell 

formula to 

generate the Pell 

Numbers 

 

Objectives:  

 

     Students will use the alternate closed-form Pell formula to generate the Pell 

Numbers 

Information: 

 

Each group will create their own flagpoles.  The materials they will use can either be 

construction paper or colored pencils, markers or crayons to create various 

flagpoles.  The colors will be red, blue and white.  The red and blue flags will each be 

one foot tall and the white flag will be two feet tall.  Students’ will try and figure out 

what triples combination will work for a zero, one, two……etc., foot flagpole.  

Summing up all of these combinations in the alternate Pell formula will produce the 

Pell Numbers. 

 

Verification:   

Students will check each other for understanding during the class period by having 

their peers present their findings in front of the classroom.  They will teach each 

other.  Teacher will also check for understanding by prompting and promoting 

discussion and with open-ended questioning.  Either at the end of the lesson or the 

following class period the teacher will collect student work and grade and give 

appropriate feedback.  The following period the class should review the previous 

days lesson to ensure comprehension and understanding before moving on to the 

next lesson. 

Activity:  
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With sketches that mimic various flagpoles, students’ will try and create multiple 

combinations of order and color on each of their flagpoles to generate the Pell 

Numbers 

 

Summary:   

 

Like the Tower of Hanoi, this should be a fun hands-on activity for students’.  This 

activity will help students’ with factorials, creating combinations and permutations. 
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5.8.2:  Student Handout 
 

Name_____________________________________  

      Period__________ 

 

Lesson 7:  Flagpoles 

 

 In one of the previous lessons you used the characteristic polynomial to find 

a closed-form formula for the Pell Sequence.  There exists other closed-form 

formulas including this one pn =
i + j + k( )!

i! j!k!i, j ,k≥0
i+ j + k =n

∑ .  This formula may seem 

intimidating but it is actually quite easy.  First, factorials are repeated multiplication 

starting with the number shown and multiplying backwards in successive order.  

For example, 0!=1 →1!=1 →2!= 2 • 1 →3!= 3• 2 •1 →etc..... 
 

Remember, the Pell numbers are p0 = 1, p1 = 2, p2 = 5, p3 = 12, p4 = 29, p5 = 70,etc .  If we 

think of the index number n  as the size of a flagpole in feet and the Pell Number as 

the different ways to arrange the flags on the flagpole.  The flags will be identified in 

the following way i = red , j = blue ,k = white .  Red and blue flags are each one-foot tall 

and white flags are two feet tall.  For example p0 =1 would be a zero foot flagpole 

with only one way to arrange those flags on the flagpole.  For question 1 you will do 

computations like the one below.  The computation will look like: 

pn =
i + j + k( )!

i! j!k!i, j ,k≥0
i+ j +k =n

∑ → p0 = 1

i + j + k = n →0 + 0 + 0 = 0 →

i, j,k( )= 0,0,0( ) →
0 + 0 + 0( )!

0!0!0!
=

1

1
=1

 

 

Basically the only triple i, j,k( ) that will work for a zero foot flagpole is 0,0,0( ) which 

is only one combination.  So when you try p1 = 2 , there will be a one-foot flagpole 

with two combinations that will work for this case.  Then for p2 = 5 there will be a 

two foot flagpole with 5 combinations that will work. 

 

 For question 2 you will create sketches of flags on flagpoles according to the 

results you got on question 1.  For example we know that p3 = 12 , which means for a 

3 foot flagpole (the index number) there are 12 possible combinations.  If you use 

R = red , B = blue ,W = white  then you will group them as such: 

 
WB WR →2

BBB BW BRR BRB BBR →5

RBB RW RRR RRB RBR →5
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If you notice each flag combination is classified by the first letter in each 

combination which is the color of the flag at the top of the flagpole.  There are 2 

White, 5 Blue and 5 Red combinations.  The sum of these 3 numbers is 12 which is 

indeed p3 = 12 .  Another thing to notice is that the number 2 is actually p1 = 2  and 

the number 5 which occurs twice is p2 = 5.  Therefore with this information if we 

use the Pell Sequence recurrence relation of pn = 2 pn −1 + pn − 2  then we have 

p3 = 2p2 + p1 →2 5( )+ 2 =12 

 

There are two parts to the exercise of which each will reinforce the other.  

With red, blue, and white construction paper or crayons, markers and colored 

pencils you will create flags and flagpoles that will represent each of the 

combinations for each Pell Number.  You will also use the formula to calculate the 

Pell Numbers that should match the different combinations of flags and flagpoles 

you are making. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 137 

Exercises: 

1) Using the alternate Pell formula pn =
i + j + k( )!

i! j!k!i, j ,k≥0
i+ j + k =n

∑  to calculate the first six 

Pell Numbers. 

 

 

 

 

 

 

 

 

 

2) Now that you have calculated the first six Pell Numbers: 

 

a) Create by sketching all of the 4-foot flagpoles.  How many are there? 

 

 

 

 

 

 

 

 

b) From your results in question a) group each flagpole according to the color at 

the top of each flagpole.  How many are in each category. 

 

 

 

 

 

 

c) What pattern do you notice?  Can you write a recurrence relation from this 

pattern? 
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5.8.3:  Instructor Solutions 
Name_____________________________________  

      Period__________ 

 

Lesson 7:  Flagpoles 

 

In one of the previous lessons you used the characteristic polynomial to find 

a closed-form formula for the Pell Sequence.  There exists other closed-form 

formulas including this one pn =
i + j + k( )!

i! j!k!i, j ,k≥0
i+ j + k =n

∑ .  This formula may seem 

intimidating but it is actually quite easy.  First, factorials are repeated multiplication 

starting with the number shown and multiplying backwards in successive order.  

For example, 0!=1 →1!=1 →2!= 2 • 1 →3!= 3• 2 •1 →etc..... 
 

Remember, the Pell numbers are p0 = 1, p1 = 2, p2 = 5, p3 = 12, p4 = 29, p5 = 70,etc .  If we 

think of the index number n  as the size of a flagpole in feet and the Pell Number as 

the different ways to arrange the flags on the flagpole.  The flags will be identified in 

the following way i = red , j = blue ,k = white .  Red and blue flags are each one-foot tall 

and white flags are two feet tall.  For example p0 =1 would be a zero foot flagpole 

with only one way to arrange those flags on the flagpole.  For question 1 you will do 

computations like the one below.  The computations will look like: 

pn =
i + j + k( )!

i! j!k!i, j ,k≥0
i+ j +k =n

∑ → p0 = 1

i + j + k = n →0 + 0 + 0 = 0 →

i, j,k( )= 0,0,0( ) →
0 + 0 + 0( )!

0!0!0!
=

1

1
=1

 

 

Basically the only triple i, j,k( ) that will work for a zero foot flagpole is 0,0,0( ) which 

is only one combination.  So when you try p1 = 2 , there will be a one-foot flagpole 

with two combinations that will work for this case.  Then for p2 = 5 there will be a 

two foot flagpole with 5 combinations that will work. 

 

 For question 2 you will create sketches of flags on flagpoles according to the 

results you got on question 1.  For example we know that p3 = 12 , which means for a 

3 foot flagpole (the index number) there are 12 possible combinations.  If you use 

R = red , B = blue ,W = white  then you will group them as such: 

 
WB WR →2

BBB BW BRR BRB BBR →5

RBB RW RRR RRB RBR →5

 

 



 139 

If you notice each flag combination is classified by the first letter in each 

combination which is the color of the flag at the top of the flagpole.  There are 2 

White, 5 Blue and 5 Red combinations.  The sum of these 3 numbers is 12 which is 

indeed p3 = 12 .  Another thing to notice is that the number 2 is actually p1 = 2  and 

the number 5 which occurs twice is p2 = 5.  Therefore with this information if we 

use the Pell Sequence recurrence relation of pn = 2 pn −1 + pn − 2  then we have 

p3 = 2p2 + p1 →2 5( )+ 2 =12 

 

There are two parts to the exercise of which each will reinforce the other.  

With red, blue, and white construction paper or crayons, markers and colored 

pencils you will create flags and flagpoles that will represent each of the 

combinations for each Pell Number.  You will also use the formula to calculate the 

Pell Numbers that should match the different combinations of flags and flagpoles 

you are making. 
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Instructor Solutions 

Exercises: 

1) Using the alternate Pell formula pn =
i + j + k( )!

i! j!k!i, j ,k≥0
i+ j + k =n

∑  to calculate the first six 

Pell Numbers. 

 

 
p0 =1

i + j + 2k = n

i + j + 2k = 0

(i, j,k)

(0,0,0)

(0 + 0 + 0)!
0!0!0!

=
1
1

=1

 

 
p1 = 2

i + j + 2k = n

i + j + 2k = 1

(i, j,k)

(0,1,0) + (1,0,0)

(0 +1+ 0)!
0!1!0!

+
(1+ 0 + 0)!

1!0!0!
1

1
+

1

1
=1+1 = 2

 

 
p2 = 5

i + j + 2k = n

i + j + 2k = 2

(i, j,k)

(2,0,0) + (1,1,0) + (0,2,0) + (0,0,1)

(2 + 0 + 0)!
2!0!0!

+
(1+1+ 0)!

1!1!0!
+

(0 + 2 + 0)!
0!2!0!

+
(0 + 0 +1)!

0!0!1!
2

2
+

2

1
+

2

2
+

1

1
=1+ 2 +1+1 = 5
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p3 =12

i + j + 2k = n

i + j + 2k = 3

(i, j,k)

(0,1,1) + (1,0,1) + (2,1,0) + (1,2,0) + (3,0,0) + (0,3,0)

(0 +1+1)!
0!1!1!

+
(1+ 0 +1)!

1!0!1!
+

(2 +1+ 0)!
2!1!0!

+
(1+ 2 + 0)!

1!2!0!
+

(3 + 0 + 0)!
3!0!0!

+
(0 + 3 + 0)!

0!3!0!
2 + 2 + 3 + 3 +1+1 =12

 

 

 
p4 = 29

i + j + 2k = n

i + j + 2k = 4

(i, j,k)

(0,2,1) + (2,0,1) + (1,1,1) + (0,0,2) + (1,3,0) + (3,1,0) + (4,0,0) + (0,4,0) + (2,2,0)

(0 + 2 +1)!

0!2!1!
+

(2 + 0 +1)!

2!0!1!
+

(1+1+1)!

1!1!1!
+

(0 + 0 + 2)!

0!0!2!
+

(1+ 3+ 0)!

1!3!0!
+

(3+1+ 0)!

3!1!0!

(4 + 0 + 0)!

4!0!0!
+

(0 + 4 + 0)!

0!4!0!

+
(2 + 2 + 0)!

2!2!0!
3+ 3 + 6 +1+ 4 + 4 +1+1+ 6 = 29

 

 
p5 = 70

i + j + 2k = n

i + j + 2k = 5

(i, j,k)

(0,1,2) + (1,0,2) + (4,1,0) + (1,4,0) + (3,2,0) + (2,3,0) + (3,0,1) + (0,3,1) + (5,0,0)

(0,5,0) + (2,1,1) + (1,2,1)

(0 +1+ 2)!
0!1!2!

+
(1+ 0 + 2)!

1!0!2!
+

(4 +1+ 0)!
4!1!0!

+
(1+ 4 + 0)!

1!4!0!
+

(3+ 2 + 0)!
3!2!0!

+
(2 + 3+ 0)!

2!3!0!
(3+ 0 +1)!

3!0!1!
+

(0 + 3+1)!
0!3!1!

+
(5 + 0 + 0)!

5!0!0!
+

(0 + 5 + 0)!
0!5!0!

+
(2 +1+1)!

2!1!1!
+

(1+ 2 +1)!
1!2!1!

3+ 3+ 5 + 5 +10 +10 + 4 + 4 +1+1+12 +12 = 70

 

 

 

2) Now that you have calculated the first six Pell Numbers: 
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a) Create by sketching all of the 4-foot flagpoles.  How many are there? 

There are 29 possibilities which is p4 = 29 .  Below are the possible 

combinations. 

 
WW WRB WBR WBB WRR

BBW BRW BBRR BBRB BBBR BBBB BRBR BRBB BRRR BRRB BWR BWB

RRW RBW RRBB RRBR RRRB RRRR RBRB RBRR RBBB RBBR RWB RWR

 

 

b) From your results in question a) group each flagpole according to the color at 

the top of each flagpole.  How many are in each category. 

 
WW WRB WBR WBB WRR

BBW BRW BBRR BBRB BBBR BBBB BRBR BRBB BRRR BRRB BWR BWB

RRW RBW RRBB RRBR RRRB RRRR RBRB RBRR RBBB RBBR RWB RWR

 

 

c)  What pattern do you notice?  Can you write a recurrence relation from 

this pattern? 

 

There are 5 combinations with white on top, 12 with blue on top and 12 

with red on top.  Notice that there are two p3 =12 and one p2 = 5.  So 

p4 = 2p3 + p2 →2 12( )+ 5 = 29 which is the desired result. 

Notes: 

 

Use the i, j,k( ) triples from exercise 1 to construct the various flags and flagpoles.  

Remember red and blue flags are one foot tall and white flags are two feet tall.  The 

corresponding colors of the flags are as follows: i = red , j = blue ,k = white . 

 

 One thing to notice closely is for triples that might represent more than one 

way to arrange the colored flags on the flagpole.  For example in p2 = 5, there are 

only 4 triples shown to calculate to get to the number 5.  However, the triple 1,1,0( ) 

has two ways to arrange the flags on the flagpole.  One way is to put a blue flag on 

top and red on bottom and the other way is to put a red flag on top and a blue flag 

on the bottom. 
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5.8.4:  Lesson Reflection 

 

Lesson 7:  Flagpoles 

 The flagpoles lesson is similar to the Tower of Hanoi in that students’ are 

able to use hands on manipulatives to make more sense of recurrence relations.  

This lesson will teach and help student’s practice factorials, permutations and 

combinations.  The actual alternate Pell Formula will help students’ calculate the 

actual terms of the Pell Sequence.  The creative part is coming up with the 

combinations that will work to generate the desired index number.  Students’ will 

be able to visually test out there i, j,k( ) combinations to see how many different 

ways they can place red, blue and white flags on the flagpole.  This lesson might be 

done before or after the Pell Sequence lesson.  
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5.9 Summary of Curriculum 

Overall the curriculum component was a success and a learning experience 

for my students and myself.  I think it went well overall because since we have 

known each other for so long there was a level of trust to go down this path that was 

unfamiliar and challenging to them.  I was fortunate because most of the students in 

this class are very bright, positive, and motivated.  Doing the chapter 1 unit from our 

Algebra 2 textbook was a good thing because it gave them some confidence and 

familiarity with recurrence relations.  The introduction lesson 1 went well because 

it was based off of the chapter we had just covered in class the previous 2-3 weeks.  

The Characteristic Polynomial was fairly successful because there was familiarity 

and knowledge about quadratics.  Lesson 3 part 1 was also fairly successful after 

some initial modeling of factoring of terms with unfamiliar notation.  Lesson 3 part 2 

was probably the least successful.  None of the students had ever seen induction and 

just had a hard time grasping the topic conceptually.  It also did not help that two-

thirds of the class was missing all of that period because of a school activity.  The 

Pell Sequence was successful also because they used the characteristic polynomial 

again as well as the closed form factorial formula which they found interesting and 

amazing that the formula could get each number of the Pell Sequence.  The tower of 

Hanoi was probably the most fun and light.   
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